Question Number 151426 by peter frank last updated on 21/Aug/21
$$\mathrm{Express}\:\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$
Answered by liberty last updated on 21/Aug/21
$$\:\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{4}\right)}=\frac{\mathrm{a}}{\mathrm{n}}+\frac{\mathrm{b}}{\mathrm{n}+\mathrm{4}}\: \\ $$$$\mathrm{a}=\:\left[\frac{\mathrm{1}}{\mathrm{n}+\mathrm{4}}\:\right]_{\mathrm{n}=\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{b}=\:\left[\frac{\mathrm{1}}{\mathrm{n}}\:\right]_{\mathrm{n}=−\mathrm{4}} =−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{4}\right)}=\frac{\mathrm{1}}{\mathrm{4n}}−\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{n}+\mathrm{4}\right)} \\ $$$$\mathrm{n}=\mathrm{5}\Rightarrow\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}\:=\frac{\mathrm{1}}{\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{36}}\: \\ $$
Answered by MJS_new last updated on 21/Aug/21
$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{unique} \\ $$$$\frac{\mathrm{1}}{\left({a}−{b}\right)\left({a}+{b}\right)}=\frac{\mathrm{1}}{\mathrm{2}\left({a}−{b}\right){b}}−\frac{\mathrm{1}}{\mathrm{2}\left({a}+{b}\right){b}}= \\ $$$$\:\:\:\:\:\left[{a}=\mathrm{7}\wedge{b}=\mathrm{2}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{36}} \\ $$$$\mathrm{but} \\ $$$$\frac{\mathrm{1}}{\left({a}−{b}\right)\left({a}+{b}\right)}=\frac{\mathrm{1}}{\mathrm{2}{a}\left({a}+{b}\right)}+\frac{\mathrm{1}}{\mathrm{2}{a}\left({a}−{b}\right)}= \\ $$$$\:\:\:\:\:\left[{a}=\mathrm{7}\wedge{b}=\mathrm{2}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{126}}+\frac{\mathrm{1}}{\mathrm{70}} \\ $$
Answered by MJS_new last updated on 21/Aug/21
$$\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\:\mathrm{with}\:{a}\geqslant{b} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}\:\in\left\{\begin{pmatrix}{\mathrm{18}}\\{−\mathrm{30}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{20}}\\{−\mathrm{36}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{30}}\\{−\mathrm{90}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{36}}\\{−\mathrm{180}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{40}}\\{−\mathrm{360}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{42}}\\{−\mathrm{630}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{44}}\\{−\mathrm{1980}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{90}}\\{\mathrm{90}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{120}}\\{\mathrm{72}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{126}}\\{\mathrm{70}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{180}}\\{\mathrm{60}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{270}}\\{\mathrm{54}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{450}}\\{\mathrm{50}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{720}}\\{\mathrm{48}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{2070}}\\{\mathrm{46}}\end{pmatrix}\:\right\} \\ $$