Menu Close

Express-1-5-9-in-partial-fraction-




Question Number 151426 by peter frank last updated on 21/Aug/21
Express (1/(5×9)) in partial fraction
$$\mathrm{Express}\:\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$
Answered by liberty last updated on 21/Aug/21
 (1/(n(n+4)))=(a/n)+(b/(n+4))   a= [(1/(n+4)) ]_(n=0) =(1/4)  b= [(1/n) ]_(n=−4) =−(1/4)   (1/(n(n+4)))=(1/(4n))−(1/(4(n+4)))  n=5⇒(1/(5×9)) =(1/(20))−(1/(36))
$$\:\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{4}\right)}=\frac{\mathrm{a}}{\mathrm{n}}+\frac{\mathrm{b}}{\mathrm{n}+\mathrm{4}}\: \\ $$$$\mathrm{a}=\:\left[\frac{\mathrm{1}}{\mathrm{n}+\mathrm{4}}\:\right]_{\mathrm{n}=\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{b}=\:\left[\frac{\mathrm{1}}{\mathrm{n}}\:\right]_{\mathrm{n}=−\mathrm{4}} =−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{4}\right)}=\frac{\mathrm{1}}{\mathrm{4n}}−\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{n}+\mathrm{4}\right)} \\ $$$$\mathrm{n}=\mathrm{5}\Rightarrow\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}\:=\frac{\mathrm{1}}{\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{36}}\: \\ $$
Answered by MJS_new last updated on 21/Aug/21
it′s not unique  (1/((a−b)(a+b)))=(1/(2(a−b)b))−(1/(2(a+b)b))=       [a=7∧b=2]  =(1/(20))−(1/(36))  but  (1/((a−b)(a+b)))=(1/(2a(a+b)))+(1/(2a(a−b)))=       [a=7∧b=2]  =(1/(126))+(1/(70))
$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{unique} \\ $$$$\frac{\mathrm{1}}{\left({a}−{b}\right)\left({a}+{b}\right)}=\frac{\mathrm{1}}{\mathrm{2}\left({a}−{b}\right){b}}−\frac{\mathrm{1}}{\mathrm{2}\left({a}+{b}\right){b}}= \\ $$$$\:\:\:\:\:\left[{a}=\mathrm{7}\wedge{b}=\mathrm{2}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{36}} \\ $$$$\mathrm{but} \\ $$$$\frac{\mathrm{1}}{\left({a}−{b}\right)\left({a}+{b}\right)}=\frac{\mathrm{1}}{\mathrm{2}{a}\left({a}+{b}\right)}+\frac{\mathrm{1}}{\mathrm{2}{a}\left({a}−{b}\right)}= \\ $$$$\:\:\:\:\:\left[{a}=\mathrm{7}\wedge{b}=\mathrm{2}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{126}}+\frac{\mathrm{1}}{\mathrm{70}} \\ $$
Answered by MJS_new last updated on 21/Aug/21
(1/(5×9))=(1/a)+(1/b) with a≥b   ((a),(b) ) ∈{ (((18)),((−30)) ) ,  (((20)),((−36)) ) ,  (((30)),((−90)) ) ,  (((36)),((−180)) ) ,  (((40)),((−360)) ) ,  (((42)),((−630)) ) ,  (((44)),((−1980)) ) ,  (((90)),((90)) ) ,  (((120)),((72)) ) ,  (((126)),((70)) ) ,  (((180)),((60)) ) ,  (((270)),((54)) ) ,  (((450)),((50)) ) ,  (((720)),((48)) ) ,  (((2070)),((46)) ) }
$$\frac{\mathrm{1}}{\mathrm{5}×\mathrm{9}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\:\mathrm{with}\:{a}\geqslant{b} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}\:\in\left\{\begin{pmatrix}{\mathrm{18}}\\{−\mathrm{30}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{20}}\\{−\mathrm{36}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{30}}\\{−\mathrm{90}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{36}}\\{−\mathrm{180}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{40}}\\{−\mathrm{360}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{42}}\\{−\mathrm{630}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{44}}\\{−\mathrm{1980}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{90}}\\{\mathrm{90}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{120}}\\{\mathrm{72}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{126}}\\{\mathrm{70}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{180}}\\{\mathrm{60}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{270}}\\{\mathrm{54}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{450}}\\{\mathrm{50}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{720}}\\{\mathrm{48}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{2070}}\\{\mathrm{46}}\end{pmatrix}\:\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *