Question Number 33899 by mondodotto@gmail.com last updated on 27/Apr/18
$$\boldsymbol{\mathrm{express}}\:\frac{\mathrm{4}\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{28}}{\boldsymbol{\mathrm{t}}^{\mathrm{4}} +\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{6}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{partial}}\:\boldsymbol{\mathrm{fraction}}. \\ $$
Answered by MJS last updated on 27/Apr/18
$${t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{6}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{6}}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\mathrm{5}}{\mathrm{2}}=\:−\mathrm{3}\:\vee\:\mathrm{2} \\ $$$${t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{6}=\left({t}^{\mathrm{2}} +\mathrm{3}\right)\left({t}^{\mathrm{2}} −\mathrm{2}\right) \\ $$$$\frac{\mathrm{4}\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{28}}{\boldsymbol{\mathrm{t}}^{\mathrm{4}} +\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{6}}=\frac{{A}}{{t}^{\mathrm{2}} +\mathrm{3}}+\frac{{B}}{{t}^{\mathrm{2}} −\mathrm{2}}=\frac{{A}\left({t}^{\mathrm{2}} −\mathrm{2}\right)+{B}\left({t}^{\mathrm{2}} +\mathrm{3}\right)}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{6}} \\ $$$$\left({A}+{B}\right){t}^{\mathrm{2}} +\left(−\mathrm{2}{A}+\mathrm{3}{B}\right)=\mathrm{4}{t}^{\mathrm{2}} −\mathrm{28} \\ $$$${A}+{B}=\mathrm{4}\:\wedge\:−\mathrm{2}{A}+\mathrm{3}{B}=−\mathrm{28} \\ $$$${A}=\mathrm{4}−{B} \\ $$$$−\mathrm{2}\left(\mathrm{4}−{B}\right)+\mathrm{3}{B}=−\mathrm{28} \\ $$$${B}=−\mathrm{4} \\ $$$${A}=\mathrm{8} \\ $$$$\frac{\mathrm{4}\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{28}}{\boldsymbol{\mathrm{t}}^{\mathrm{4}} +\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{6}}=\frac{\mathrm{8}}{{t}^{\mathrm{2}} +\mathrm{3}}−\frac{\mathrm{4}}{{t}^{\mathrm{2}} −\mathrm{2}} \\ $$
Commented by math1967 last updated on 27/Apr/18
$${I}\:{can}\:{also}\:{write} \\ $$$${A}\left({t}^{\mathrm{2}} −\mathrm{2}\right)+{B}\left({t}^{\mathrm{2}} +\mathrm{3}\right)=\mathrm{4}{t}^{\mathrm{2}} −\mathrm{28} \\ $$$${putting}\:{t}^{\mathrm{2}} =\mathrm{2} \\ $$$${A}×\mathrm{0}+{B}×\mathrm{5}=\mathrm{4}×\mathrm{2}−\mathrm{28} \\ $$$$\therefore{B}=−\mathrm{4}\:{similarly}\:{we}\:{get}\:{A}=\mathrm{8} \\ $$
Answered by math1967 last updated on 27/Apr/18
$$\frac{\mathrm{8}\left({t}^{\mathrm{2}} −\mathrm{2}\right)−\mathrm{4}\left({t}^{\mathrm{2}} +\mathrm{3}\right)}{\left({t}^{\mathrm{2}} −\mathrm{2}\right)\left({t}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$$$\frac{\mathrm{8}}{{t}^{\mathrm{2}} +\mathrm{3}}\:−\frac{\mathrm{4}}{{t}^{\mathrm{2}} −\mathrm{2}} \\ $$