Menu Close

Express-as-the-product-of-disjoint-cycle-the-permutation-a-1-4-2-6-1-5-4-1-5-3-6-2-b-1-6-3-1-3-5-7-6-7-1-2-3-4-5-c-1-2-3-4-5-6-7-1-3-5-7-Find-the-order-of-each-of-




Question Number 192339 by Mastermind last updated on 15/May/23
Express as the product of disjoint   cycle the permutation  a) θ(1)=4  θ(2)=6  θ(1)=5  θ(4)=1  θ(5)=3  θ(6)=2    b) (1 6 3)(1 3 5 7)(6 7)(1 2 3 4 5)    c) (1 2 3 4 5)(6 7)(1 3 5 7)  Find the order of each of them    help!
$$\mathrm{Express}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{disjoint}\: \\ $$$$\mathrm{cycle}\:\mathrm{the}\:\mathrm{permutation} \\ $$$$\left.\mathrm{a}\right)\:\theta\left(\mathrm{1}\right)=\mathrm{4}\:\:\theta\left(\mathrm{2}\right)=\mathrm{6}\:\:\theta\left(\mathrm{1}\right)=\mathrm{5}\:\:\theta\left(\mathrm{4}\right)=\mathrm{1} \\ $$$$\theta\left(\mathrm{5}\right)=\mathrm{3}\:\:\theta\left(\mathrm{6}\right)=\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\left(\mathrm{1}\:\mathrm{6}\:\mathrm{3}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right) \\ $$$$ \\ $$$$\left.\mathrm{c}\right)\:\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them} \\ $$$$ \\ $$$$\mathrm{help}! \\ $$
Answered by aleks041103 last updated on 15/May/23
a)  θ= (((1 2 3 4 5 6)),((4 6 5 1 3 2)) ) = (1 4)(2 6)(3 5)    b) (1 6 3)(1 3 5 7)(6 7)(1 2 3 4 5)=  = (((1 2 3 4 5 6 7)),((2 5 4 7 1 6 3)) ) = (1 2 5)(3 4 7)    c) (1 2 3 4 5)(6 7)(1 3 5 7)=  = (((1 2 3 4 5 6 7)),((4 3 1 5 6 7 2)) ) = (1 4 5 6 7 2 3)    a) ∣θ∣=lcm(2,2,2)=2  b) ∣(1 6 3)(1 3 5 7)(6 7)(1 2 3 4 5)∣=lcm(3,3)=3  c)∣(1 2 3 4 5)(6 7)(1 3 5 7)∣=lcm(7)=7
$$\left.{a}\right) \\ $$$$\theta=\begin{pmatrix}{\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}}\\{\mathrm{4}\:\mathrm{6}\:\mathrm{5}\:\mathrm{1}\:\mathrm{3}\:\mathrm{2}}\end{pmatrix}\:=\:\left(\mathrm{1}\:\mathrm{4}\right)\left(\mathrm{2}\:\mathrm{6}\right)\left(\mathrm{3}\:\mathrm{5}\right) \\ $$$$ \\ $$$$\left.{b}\right)\:\left(\mathrm{1}\:\mathrm{6}\:\mathrm{3}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)= \\ $$$$=\begin{pmatrix}{\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}}\\{\mathrm{2}\:\mathrm{5}\:\mathrm{4}\:\mathrm{7}\:\mathrm{1}\:\mathrm{6}\:\mathrm{3}}\end{pmatrix}\:=\:\left(\mathrm{1}\:\mathrm{2}\:\mathrm{5}\right)\left(\mathrm{3}\:\mathrm{4}\:\mathrm{7}\right) \\ $$$$ \\ $$$$\left.{c}\right)\:\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)= \\ $$$$=\begin{pmatrix}{\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}}\\{\mathrm{4}\:\mathrm{3}\:\mathrm{1}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{2}}\end{pmatrix}\:=\:\left(\mathrm{1}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{2}\:\mathrm{3}\right) \\ $$$$ \\ $$$$\left.{a}\right)\:\mid\theta\mid={lcm}\left(\mathrm{2},\mathrm{2},\mathrm{2}\right)=\mathrm{2} \\ $$$$\left.{b}\right)\:\mid\left(\mathrm{1}\:\mathrm{6}\:\mathrm{3}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)\mid={lcm}\left(\mathrm{3},\mathrm{3}\right)=\mathrm{3} \\ $$$$\left.{c}\right)\mid\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\right)\left(\mathrm{6}\:\mathrm{7}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\:\mathrm{7}\right)\mid={lcm}\left(\mathrm{7}\right)=\mathrm{7} \\ $$
Commented by Mastermind last updated on 18/May/23
Thank you so much sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *