Menu Close

Express-the-function-f-z-ze-iz-in-polar-form-and-separate-it-into-Real-and-Imaginary-part-M-m-




Question Number 180159 by Mastermind last updated on 08/Nov/22
Express the function f(z)=ze^(iz)  in polar  form and separate it into Real and   Imaginary part.    M.m
Expressthefunctionf(z)=zeizinpolarformandseparateitintoRealandImaginarypart.M.m
Answered by Frix last updated on 08/Nov/22
z∈C  z=a+bi  f(z)=(a+bi)e^(−b+ai) =(a+bi)e^(−b) e^(ai) =(a/e^b )e^(ai) +((bi)/e^b )e^(ai) =  =(a/e^b )(cos a +i sin a)+((bi)/e^b )(cos a +i sin a)=  =(a/e^b )(cos a +i sin a)+(b/e^b )(−sin a +i cos a)=  =((acos a −bsin a)/e^b )+((asin a +bcos a)/e^b )i
zCz=a+bif(z)=(a+bi)eb+ai=(a+bi)ebeai=aebeai+biebeai==aeb(cosa+isina)+bieb(cosa+isina)==aeb(cosa+isina)+beb(sina+icosa)==acosabsinaeb+asina+bcosaebi
Commented by Mastermind last updated on 09/Nov/22
Thank you man
Thankyouman
Commented by Mastermind last updated on 09/Nov/22
But in polar form
Butinpolarform
Commented by Frix last updated on 09/Nov/22
ze^(iz)  is the polar form  and in polar form you cannot seperate the  real and imaginary parts
zeizisthepolarformandinpolarformyoucannotseperatetherealandimaginaryparts

Leave a Reply

Your email address will not be published. Required fields are marked *