Menu Close

f-0-0-f-1-e-3-f-C-2-R-f-x-5-f-x-6-f-x-0-x-R-Find-lim-x-1-1-f-x-x-




Question Number 181794 by Shrinava last updated on 30/Nov/22
f(0) = 0  f(1) = e^3   f ∈ C^2  (R)  f^(′′)  (x) − 5 f^′ (x) + 6 f(x) = 0  ,  ∀ x ∈ R  Find:   𝛀 =lim_(x→∞)  (1 − (1/(f (x))))^x
f(0)=0f(1)=e3fC2(R)f(x)5f(x)+6f(x)=0,xRFind:Ω=limx(11f(x))x
Answered by mr W last updated on 01/Dec/22
r^2 −5r+6=0  (r−2)(r−3)=0  r=2, 3  f(x)=C_1 e^(2x) +C_2 e^(3x)   f(0)=C_1 +C_2 =0 ⇒C_1 =−C_2   f(1)=C_1 e^2 +C_2 e^3 =e^3  ⇒C_1 +C_2 e=e   ⇒C_2 =(e/(e−1))=−C_1   ⇒f(x)=(e/(e−1))(−e^(2x) +e^(3x) )  Ω=lim_(x→∞) (1−(1/(f(x))))^x      =lim_(x→∞) (1−((e−1)/(e^(2x+1) (e^x −1))))^x =1
r25r+6=0(r2)(r3)=0r=2,3f(x)=C1e2x+C2e3xf(0)=C1+C2=0C1=C2f(1)=C1e2+C2e3=e3C1+C2e=eC2=ee1=C1f(x)=ee1(e2x+e3x)Ω=limx(11f(x))x=limx(1e1e2x+1(ex1))x=1
Commented by Shrinava last updated on 01/Dec/22
thank you dear professor cool
thankyoudearprofessorcool

Leave a Reply

Your email address will not be published. Required fields are marked *