Menu Close

f-0-1-R-lim-x-0-f-x-0-lim-x-0-f-x-f-x-2-x-0-lim-x-0-f-x-x-




Question Number 56706 by gunawan last updated on 22/Mar/19
f : [0, 1) → R  lim_(x→0)  f(x)=0  lim_(x→0)  ((f(x)−f((x/2)))/x)=0  lim_(x→0)  ((f(x))/x) =...
$${f}\::\:\left[\mathrm{0},\:\mathrm{1}\right)\:\rightarrow\:\mathbb{R} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)−{f}\left(\frac{{x}}{\mathrm{2}}\right)}{{x}}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)}{{x}}\:=… \\ $$
Commented by Abdo msup. last updated on 22/Mar/19
(x/2) =t ⇒lim_(x→0)   ((f(x)−f((x/2)))/x) =lim_(t→0) ((f(2t)−f(t))/(2t)) =0  ⇒lim_(t→0)    ((f(2t))/(2t)) =(1/2)lim_(t→0) ((f(t))/t) ⇒l=(l/2) ⇒l=0 ⇒  lim_(x→0)   ((f(x))/x) =0
$$\frac{{x}}{\mathrm{2}}\:={t}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}\right)−{f}\left(\frac{{x}}{\mathrm{2}}\right)}{{x}}\:={lim}_{{t}\rightarrow\mathrm{0}} \frac{{f}\left(\mathrm{2}{t}\right)−{f}\left({t}\right)}{\mathrm{2}{t}}\:=\mathrm{0} \\ $$$$\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{f}\left(\mathrm{2}{t}\right)}{\mathrm{2}{t}}\:=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{t}\rightarrow\mathrm{0}} \frac{{f}\left({t}\right)}{{t}}\:\Rightarrow{l}=\frac{{l}}{\mathrm{2}}\:\Rightarrow{l}=\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}\right)}{{x}}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *