Menu Close

f-0-f-1-f-2-f-n-n-n-a-f-16-15-15-1-find-a-




Question Number 147697 by mathdanisur last updated on 22/Jul/21
f(0)+f(1)+f(2)+...+f(n)=n!−n∙a  f(16)=15∙(15!−1)  find  a=?
$${f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+…+{f}\left({n}\right)={n}!−{n}\centerdot{a} \\ $$$${f}\left(\mathrm{16}\right)=\mathrm{15}\centerdot\left(\mathrm{15}!−\mathrm{1}\right) \\ $$$${find}\:\:\boldsymbol{{a}}=? \\ $$
Answered by Olaf_Thorendsen last updated on 22/Jul/21
Σ_(k=0) ^n f(k) = n!−na   (1)  ⇒ Σ_(k=0) ^(n+1) f(k) = (n+1)!−(n+1)a   (2)  (2)−(1) : f(n+1) = (n+1)!−(n+1)a−n!+na  f(n+1) = n.n!−a  If n = 15 : f(16) = 15.15!−a  f(16) = 15(15!−(a/(15))) = 15(15!−1)  ⇒ a = 15
$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{f}\left({k}\right)\:=\:{n}!−{na}\:\:\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\sum}}{f}\left({k}\right)\:=\:\left({n}+\mathrm{1}\right)!−\left({n}+\mathrm{1}\right){a}\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)−\left(\mathrm{1}\right)\::\:{f}\left({n}+\mathrm{1}\right)\:=\:\left({n}+\mathrm{1}\right)!−\left({n}+\mathrm{1}\right){a}−{n}!+{na} \\ $$$${f}\left({n}+\mathrm{1}\right)\:=\:{n}.{n}!−{a} \\ $$$$\mathrm{If}\:{n}\:=\:\mathrm{15}\::\:{f}\left(\mathrm{16}\right)\:=\:\mathrm{15}.\mathrm{15}!−{a} \\ $$$${f}\left(\mathrm{16}\right)\:=\:\mathrm{15}\left(\mathrm{15}!−\frac{{a}}{\mathrm{15}}\right)\:=\:\mathrm{15}\left(\mathrm{15}!−\mathrm{1}\right) \\ $$$$\Rightarrow\:{a}\:=\:\mathrm{15} \\ $$
Commented by mathdanisur last updated on 22/Jul/21
Thank you Ser
$${Thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *