Menu Close

f-1-3-R-f-x-1-x-A-1-1-B-1-1-3-B-b-1-b-b-1-Find-i-equation-of-line-AB-ii-equation-of-tangent-T-to-C-f-at-point-with-x-1-b-2-iii-Study-relative-positions-of-L-




Question Number 190260 by alcohol last updated on 30/Mar/23
f : [1, 3] →R , f(x) = (1/x)  A(1, 1)  B(1, (1/3))  B′(b, (1/b)) , b ≥ 1  Find  i. equation of line AB′  ii. equation of tangent T ′ to C_f  at point  with x = ((1 + b)/2)  iii. Study relative positions of L_(AB ′)  , T ′ to C_f
f:[1,3]R,f(x)=1xA(1,1)B(1,13)B(b,1b),b1Findi.equationoflineABii.equationoftangentTtoCfatpointwithx=1+b2iii.StudyrelativepositionsofLAB,TtoCf
Answered by a.lgnaoui last updated on 31/Mar/23
i.equation of line AB^′   AB^′ :portion of droite AB^′ (y_1 =a^′ x+b^′ )  verifie   { ((a^′ +b^′ =1)),((ba^′ +b′=(1/b))) :}          y_1 =((−x)/b)+(1/b)+1  ii)equation of tengente T^:  to C_f  at   point:x_0 =((1+b)/2)   (df_((x)) /dx)=((−1)/x^2 )   x_0 =((1+b)/2)  ⇒ f^′ (x)′=((−4)/((1+b)^2 ))   ((f(x)−f(x_0 ))/(x−x_0 ))=((−4)/((1+b)^2 ))  y=((4(((1+b)/2)−x))/((1+b)^2 ))+(2/(1+b))=((2(1+b−2x+1+b))/((1+b)^2 ))         y_2 =((−4)/((1+b)^2 ))x+(4/(1+b))  iii)Γ^′ is betwen  tengente AB′ and C_f   ((1/b)>(1/((1+b)^2 )))   with  b>1      y_1 −y_2 =(((−x)/b)+((b+1)/b))+((4/((1+b)^2 ))x−(4/(1+b)))  =((4/((1+b)^2 ))−(1/b))x+(((b+1)^2 −4b)/(b(1+b)))  =((−(b−1)^2 )/(b(1+b)^2 ))x+(((b−1)^2 )/(b(1+b)))     (((b−1)^2 )/(b(1+b)))[((−x)/(b+1))+1]  forme a^(′′) x+b^(′′)    (b^(′′) >0    a^(′′) <0)  ⇒    T^′ ′ ander Γ^′
i.equationoflineABAB:portionofdroiteAB(y1=ax+b)verifie{a+b=1ba+b=1by1=xb+1b+1ii)equationoftengenteT:toCfatpoint:x0=1+b2df(x)dx=1x2x0=1+b2f(x)=4(1+b)2f(x)f(x0)xx0=4(1+b)2y=4(1+b2x)(1+b)2+21+b=2(1+b2x+1+b)(1+b)2y2=4(1+b)2x+41+biii)ΓisbetwentengenteABandCf(1b>1(1+b)2)withb>1y1y2=(xb+b+1b)+(4(1+b)2x41+b)=(4(1+b)21b)x+(b+1)24bb(1+b)=(b1)2b(1+b)2x+(b1)2b(1+b)(b1)2b(1+b)[xb+1+1]formeax+b(b>0a<0)Prime causes double exponent: use braces to clarify
Commented by a.lgnaoui last updated on 31/Mar/23
Commented by alcohol last updated on 31/Mar/23
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *