Menu Close

f-1-3-R-f-x-1-x-A-1-1-B-1-1-3-B-b-1-b-b-1-Find-i-equation-of-line-AB-ii-equation-of-tangent-T-to-C-f-at-point-with-x-1-b-2-iii-Study-relative-positions-of-L-




Question Number 190260 by alcohol last updated on 30/Mar/23
f : [1, 3] →R , f(x) = (1/x)  A(1, 1)  B(1, (1/3))  B′(b, (1/b)) , b ≥ 1  Find  i. equation of line AB′  ii. equation of tangent T ′ to C_f  at point  with x = ((1 + b)/2)  iii. Study relative positions of L_(AB ′)  , T ′ to C_f
$${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}} \\ $$$${iii}.\:{Study}\:{relative}\:{positions}\:{of}\:{L}_{{AB}\:'} \:,\:{T}\:'\:{to}\:{C}_{{f}} \\ $$
Answered by a.lgnaoui last updated on 31/Mar/23
i.equation of line AB^′   AB^′ :portion of droite AB^′ (y_1 =a^′ x+b^′ )  verifie   { ((a^′ +b^′ =1)),((ba^′ +b′=(1/b))) :}          y_1 =((−x)/b)+(1/b)+1  ii)equation of tengente T^:  to C_f  at   point:x_0 =((1+b)/2)   (df_((x)) /dx)=((−1)/x^2 )   x_0 =((1+b)/2)  ⇒ f^′ (x)′=((−4)/((1+b)^2 ))   ((f(x)−f(x_0 ))/(x−x_0 ))=((−4)/((1+b)^2 ))  y=((4(((1+b)/2)−x))/((1+b)^2 ))+(2/(1+b))=((2(1+b−2x+1+b))/((1+b)^2 ))         y_2 =((−4)/((1+b)^2 ))x+(4/(1+b))  iii)Γ^′ is betwen  tengente AB′ and C_f   ((1/b)>(1/((1+b)^2 )))   with  b>1      y_1 −y_2 =(((−x)/b)+((b+1)/b))+((4/((1+b)^2 ))x−(4/(1+b)))  =((4/((1+b)^2 ))−(1/b))x+(((b+1)^2 −4b)/(b(1+b)))  =((−(b−1)^2 )/(b(1+b)^2 ))x+(((b−1)^2 )/(b(1+b)))     (((b−1)^2 )/(b(1+b)))[((−x)/(b+1))+1]  forme a^(′′) x+b^(′′)    (b^(′′) >0    a^(′′) <0)  ⇒    T^′ ′ ander Γ^′
$${i}.{equation}\:{of}\:{line}\:{AB}^{'} \\ $$$${AB}^{'} :{portion}\:{of}\:{droite}\:{AB}^{'} \left({y}_{\mathrm{1}} ={a}^{'} {x}+{b}^{'} \right) \\ $$$${verifie}\:\:\begin{cases}{{a}^{'} +{b}^{'} =\mathrm{1}}\\{{ba}^{'} +{b}'=\frac{\mathrm{1}}{{b}}}\end{cases}\:\:\: \\ $$$$\:\:\:\:\:\boldsymbol{{y}}_{\mathrm{1}} =\frac{−\boldsymbol{{x}}}{\boldsymbol{{b}}}+\frac{\mathrm{1}}{\boldsymbol{{b}}}+\mathrm{1} \\ $$$$\left.\boldsymbol{{ii}}\right){equation}\:{of}\:{tengente}\:{T}^{:} \:{to}\:{C}_{{f}} \:{at}\: \\ $$$${point}:{x}_{\mathrm{0}} =\frac{\mathrm{1}+{b}}{\mathrm{2}} \\ $$$$\:\frac{{df}_{\left({x}\right)} }{{dx}}=\frac{−\mathrm{1}}{{x}^{\mathrm{2}} }\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{1}+{b}}{\mathrm{2}}\:\:\Rightarrow\:{f}^{'} \left({x}\right)'=\frac{−\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }\: \\ $$$$\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }=\frac{−\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} } \\ $$$${y}=\frac{\mathrm{4}\left(\frac{\mathrm{1}+{b}}{\mathrm{2}}−{x}\right)}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{1}+{b}}=\frac{\mathrm{2}\left(\mathrm{1}+{b}−\mathrm{2}{x}+\mathrm{1}+{b}\right)}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{y}}_{\mathrm{2}} =\frac{−\mathrm{4}}{\left(\mathrm{1}+\boldsymbol{{b}}\right)^{\mathrm{2}} }\boldsymbol{{x}}+\frac{\mathrm{4}}{\mathrm{1}+\boldsymbol{{b}}} \\ $$$$\left.{iii}\right)\Gamma^{'} {is}\:{betwen}\:\:{tengente}\:{AB}'\:{and}\:{C}_{{f}} \\ $$$$\left(\frac{\mathrm{1}}{{b}}>\frac{\mathrm{1}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }\right)\:\:\:{with}\:\:{b}>\mathrm{1} \\ $$$$\:\:\:\:{y}_{\mathrm{1}} −{y}_{\mathrm{2}} =\left(\frac{−{x}}{{b}}+\frac{{b}+\mathrm{1}}{{b}}\right)+\left(\frac{\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }{x}−\frac{\mathrm{4}}{\mathrm{1}+{b}}\right) \\ $$$$=\left(\frac{\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{b}}\right){x}+\frac{\left({b}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{b}}{{b}\left(\mathrm{1}+{b}\right)} \\ $$$$=\frac{−\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }{x}+\frac{\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)} \\ $$$$\:\:\:\frac{\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)}\left[\frac{−{x}}{{b}+\mathrm{1}}+\mathrm{1}\right] \\ $$$${forme}\:{a}^{''} {x}+{b}^{''} \:\:\:\left({b}^{''} >\mathrm{0}\:\:\:\:{a}^{''} <\mathrm{0}\right) \\ $$$$\Rightarrow\:\:\:\:{T}^{'} '\:{ander}\:\Gamma^{'} \\ $$
Commented by a.lgnaoui last updated on 31/Mar/23
Commented by alcohol last updated on 31/Mar/23
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *