Menu Close

f-1-x-1-x-x-3-f-1-x-f-8-




Question Number 192080 by sciencestudentW last updated on 07/May/23
f^(−1) (((x+1)/x))=x^3     f^(−1) (x)+f(8)=?
$${f}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)={x}^{\mathrm{3}} \:\: \\ $$$${f}^{−\mathrm{1}} \left({x}\right)+{f}\left(\mathrm{8}\right)=? \\ $$
Answered by AST last updated on 07/May/23
f^(−1) (((x+1)/x))=x^3 ⇒f(x^3 )=((x+1)/x)=1+(1/x)  ⇒f(x)=1+(1/( (x)^(1/3) ))  f(8)=(3/2)  Let y=1+(1/( (x)^(1/3) ))  (x)^(1/3) =(1/(y−1))⇒x=(1/( (y−1)^3 ))⇒f^(−1) (x)=(1/( (x−1)^3 ))  ⇒f^(−1) (x)+f(8)=((2+3(x−1)^3 )/(2(x−1)^3 ))
$${f}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)={x}^{\mathrm{3}} \Rightarrow{f}\left({x}^{\mathrm{3}} \right)=\frac{{x}+\mathrm{1}}{{x}}=\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}}} \\ $$$${f}\left(\mathrm{8}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${Let}\:{y}=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}}} \\ $$$$\sqrt[{\mathrm{3}}]{{x}}=\frac{\mathrm{1}}{{y}−\mathrm{1}}\Rightarrow{x}=\frac{\mathrm{1}}{\:\left({y}−\mathrm{1}\right)^{\mathrm{3}} }\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\:\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)+{f}\left(\mathrm{8}\right)=\frac{\mathrm{2}+\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{2}\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *