Menu Close

f-1-x-f-1-x-x-f-x-




Question Number 165848 by leonhard77 last updated on 09/Feb/22
 f((1/x))+f(1−x)=x    f(x)=?
$$\:{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$$$\:\:{f}\left({x}\right)=? \\ $$
Answered by qaz last updated on 10/Feb/22
f(x)+f(1−(1/x))=(1/x)  ⇒f(x)=(1/x)−f(1−(1/x))  =(1/x)−[(1/(1−(1/x)))−f(1−(1/(1−(1/x))))]  =(1/x)−(x/(x−1))+f((1/(1−x)))  =(1/x)−(x/(x−1))+1−x−f(x)  ⇒f(x)=(1/2)((1/x)−(x/(x−1))+1−x)
$$\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}}−\left[\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}}−\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}+\mathrm{1}−\mathrm{x}−\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}+\mathrm{1}−\mathrm{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *