Menu Close

f-2x-2-f-x-2-1-0-f-x-




Question Number 163942 by Rasheed.Sindhi last updated on 12/Jan/22
f(2x)−2[ f(x) ]^2 +1=0  f(x)=?
f(2x)2[f(x)]2+1=0f(x)=?
Answered by mr W last updated on 12/Jan/22
x ∈ R  so it′s also valid for x∈N, say x=n,  f(2n)=2(f(n))^2 −1  a_(2n) =2a_n ^2 −1  ???? similar to cos (2θ)=2 (cos θ)^2 −1  ????  let a_n =cos θ_n   cos θ_(2n) =2 cos^2  θ_n −1=cos (2θ_n )  ⇒θ_(2n) =2θ_n   θ_2 =2θ_1   θ_4 =2^2 θ_1   ...  θ_2^n  =2^n θ_1   generally  θ_n =nθ_1    with θ_1 =constant=c  f(n)=a_n =cos θ_n =cos (nθ_1 )=cos (nc)  or  ⇒f(x)=cos (cx)    example: f(1)=0 ⇒c=(π/2)  ⇒f(x)=cos (((xπ)/2))
xRsoitsalsovalidforxN,sayx=n,f(2n)=2(f(n))21a2n=2an21????similartocos(2θ)=2(cosθ)21????letan=cosθncosθ2n=2cos2θn1=cos(2θn)θ2n=2θnθ2=2θ1θ4=22θ1θ2n=2nθ1generallyθn=nθ1withθ1=constant=cf(n)=an=cosθn=cos(nθ1)=cos(nc)orf(x)=cos(cx)example:f(1)=0c=π2f(x)=cos(xπ2)
Commented by Rasheed.Sindhi last updated on 13/Jan/22
V Fine Sir!
VFineSir!
Commented by Rasheed.Sindhi last updated on 13/Jan/22
Sir this is the reposted question(Q#1307)
You can't use 'macro parameter character #' in math mode
Commented by mr W last updated on 13/Jan/22
thanks sir!  since cos 2x=2 cos^2  x−1 and  cosh 2x=2 cosh^2  x−1, we have   generally two possiblities:  f(x)=cos (cx) or f(x)=cosh (cx).  but depending on initial condition,  there is only one solution suitable.
thankssir!sincecos2x=2cos2x1andcosh2x=2cosh2x1,wehavegenerallytwopossiblities:f(x)=cos(cx)orf(x)=cosh(cx).butdependingoninitialcondition,thereisonlyonesolutionsuitable.
Commented by Rasheed.Sindhi last updated on 13/Jan/22
Thanks a lot sir!
Thanksalotsir!Thanksalot\boldsymbolsir!

Leave a Reply

Your email address will not be published. Required fields are marked *