Question Number 148911 by mathdanisur last updated on 01/Aug/21
$${f}:\left[−\mathrm{3},\:\mathrm{0}\right]\rightarrow\left[\mathrm{7},\:\mathrm{22}\right] \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:+\:\mathrm{7} \\ $$$${find}\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)\:=\:? \\ $$
Answered by EDWIN88 last updated on 01/Aug/21
$${f}\:{is}\:{one}−{one}\:{since}\:{f}\left({x}_{\mathrm{1}} \right)={f}\left({x}_{\mathrm{2}} \right) \\ $$$$\Rightarrow{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} +\mathrm{7}={x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{2}} +\mathrm{7} \\ $$$$\Rightarrow\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)−\mathrm{2}\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}_{\mathrm{1}} ={x}_{\mathrm{2}} \:\left[\:\because\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} −\mathrm{2}\:\neq\:\mathrm{0}\:\right] \\ $$$${let}\:{y}\in{Y}\:{then}\:{f}\:{being}\:{onto}\:{there} \\ $$$${exist}\:{x}\:{such}\:{that}\:{y}={f}\left({x}\right) \\ $$$${Now}\:{y}={f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7} \\ $$$${y}=\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{6}\: \\ $$$$\Rightarrow{x}=\mathrm{1}+\sqrt{{y}−\mathrm{6}}\: \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({y}\right)=\mathrm{1}+\sqrt{{y}−\mathrm{6}} \\ $$$${thus}\:{we}\:{define}\:{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{1}+\sqrt{{x}−\mathrm{6}} \\ $$
Commented by mathdanisur last updated on 01/Aug/21
$${Thank}\:{you}\:{Ser} \\ $$