Menu Close

f-continue-on-0-1-and-f-x-gt-0-on-0-1-prove-that-0-1-lnf-x-dx-ln-0-1-f-x-dx-




Question Number 97983 by abdomathmax last updated on 10/Jun/20
f continue  on [0,1] and f(x)>0 on [0,1]  prove that ∫_0 ^1 lnf(x)dx≤ln(∫_0 ^1 f(x)dx)
$$\mathrm{f}\:\mathrm{continue}\:\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{and}\:\mathrm{f}\left(\mathrm{x}\right)>\mathrm{0}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnf}\left(\mathrm{x}\right)\mathrm{dx}\leqslant\mathrm{ln}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *