Question Number 37840 by ajfour last updated on 18/Jun/18
![f(θ,φ)=((cos φ[cos θ tan (((θ+φ)/2))−sin θ]^2 )/(cos φtan (((θ+φ)/2))+sin φ)) φ ∈ (0,(π/2)) , θ ∈ (−(π/2), (π/2)); find maximum f(θ,φ).](https://www.tinkutara.com/question/Q37840.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
![f(θ,φ)=(N_r /D_r ) N_r =cosφ[cosθtan(((θ+φ)/2))−sinθ]^2 =cosφ[((cosθsin(((θ+φ)/2))−sinθcos(((θ+φ)/2)))/(cos(((θ+∅)/2))))]^2 =cosφ[((sin(((φ−θ)/2)))/(cos(((θ+φ)/2))))]^2 D_r =cosφtan(((θ+φ)/2))+sinφ =((cosφ.sin(((θ+φ)/2))+cos(((θ+φ)/2))sinφ)/(cos(((θ+∅)/2)))) =((sin(((θ+3φ)/2)))/(cos(((θ+φ)/2)))) f(θ,φ)=((cosφ[sin(((φ−θ)/2))]^2 ×cos(((θ+φ)/2)))/(sin(((θ+3φ)/2))×[cos(((θ+φ)/2)]^2 )) =((cosφ[sin(((φ−θ)/2))]^2 )/(sin(((θ+3φ)/2))cos(((θ+φ)/2)))) =((2cosφ[sin(((φ−θ)/2))]^2 )/(2sin(φ+((θ+∅)/2))cos(((θ+φ)/2))))=((2cos0[sin^2 (−(Π/4))})/(2sin(Π/4)×cos(Π/4)))=1 wait... φ (0,(Π/2)) θ(((−Π)/2),(Π/2)) max N_r when φ=0 θ=(Π/2)](https://www.tinkutara.com/question/Q37846.png)
Commented by ajfour last updated on 18/Jun/18
![i should have given θ,φ ∈[−(π/2),(π/2)]. Thank you Tanmay Sir. Your answer is indeed right, i believe.](https://www.tinkutara.com/question/Q37853.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
