Menu Close

f-cos-cos-tan-2-sin-2-cos-tan-2-sin-0-pi-2-pi-2-pi-2-find-maximum-f-




Question Number 37840 by ajfour last updated on 18/Jun/18
f(θ,φ)=((cos φ[cos θ tan (((θ+φ)/2))−sin θ]^2 )/(cos φtan (((θ+φ)/2))+sin φ))   φ ∈ (0,(π/2)) , θ ∈ (−(π/2), (π/2));  find maximum f(θ,φ).
f(θ,ϕ)=cosϕ[cosθtan(θ+ϕ2)sinθ]2cosϕtan(θ+ϕ2)+sinϕϕ(0,π2),θ(π2,π2);findmaximumf(θ,ϕ).
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
f(θ,φ)=(N_r /D_r )  N_r =cosφ[cosθtan(((θ+φ)/2))−sinθ]^2   =cosφ[((cosθsin(((θ+φ)/2))−sinθcos(((θ+φ)/2)))/(cos(((θ+∅)/2))))]^2   =cosφ[((sin(((φ−θ)/2)))/(cos(((θ+φ)/2))))]^2   D_r =cosφtan(((θ+φ)/2))+sinφ  =((cosφ.sin(((θ+φ)/2))+cos(((θ+φ)/2))sinφ)/(cos(((θ+∅)/2))))  =((sin(((θ+3φ)/2)))/(cos(((θ+φ)/2))))  f(θ,φ)=((cosφ[sin(((φ−θ)/2))]^2 ×cos(((θ+φ)/2)))/(sin(((θ+3φ)/2))×[cos(((θ+φ)/2)]^2 ))  =((cosφ[sin(((φ−θ)/2))]^2 )/(sin(((θ+3φ)/2))cos(((θ+φ)/2))))     =((2cosφ[sin(((φ−θ)/2))]^2 )/(2sin(φ+((θ+∅)/2))cos(((θ+φ)/2))))=((2cos0[sin^2 (−(Π/4))})/(2sin(Π/4)×cos(Π/4)))=1  wait... φ (0,(Π/2))    θ(((−Π)/2),(Π/2))  max N_r  when φ=0   θ=(Π/2)
f(θ,ϕ)=NrDrNr=cosϕ[cosθtan(θ+ϕ2)sinθ]2=cosϕ[cosθsin(θ+ϕ2)sinθcos(θ+ϕ2)cos(θ+2)]2=cosϕ[sin(ϕθ2)cos(θ+ϕ2)]2Dr=cosϕtan(θ+ϕ2)+sinϕ=cosϕ.sin(θ+ϕ2)+cos(θ+ϕ2)sinϕcos(θ+2)=sin(θ+3ϕ2)cos(θ+ϕ2)f(θ,ϕ)=cosϕ[sin(ϕθ2)]2×cos(θ+ϕ2)sin(θ+3ϕ2)×[cos(θ+ϕ2]2=cosϕ[sin(ϕθ2)]2sin(θ+3ϕ2)cos(θ+ϕ2)=2cosϕ[sin(ϕθ2)]22sin(ϕ+θ+2)cos(θ+ϕ2)=2cos0[sin2(Π4)}2sinΠ4×cosΠ4=1waitϕ(0,Π2)θ(Π2,Π2)maxNrwhenϕ=0θ=Π2
Commented by ajfour last updated on 18/Jun/18
i should have given θ,φ ∈[−(π/2),(π/2)].  Thank you Tanmay Sir.  Your answer is indeed right,  i believe.
ishouldhavegivenθ,ϕ[π2,π2].ThankyouTanmaySir.Youranswerisindeedright,ibelieve.
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
thanx got moral boost to face the challenges
thanxgotmoralboosttofacethechallenges

Leave a Reply

Your email address will not be published. Required fields are marked *