Menu Close

f-f-x-9x-2-6x-2-f-x-f-x-




Question Number 158668 by cortano last updated on 07/Nov/21
 f(f(x))= (9x^2 +6x+2)f(x)   f(x)=?
$$\:{f}\left({f}\left({x}\right)\right)=\:\left(\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{2}\right){f}\left({x}\right) \\ $$$$\:{f}\left({x}\right)=? \\ $$
Answered by ajfour last updated on 07/Nov/21
Assuming f(x) is a polynome..  n^2 =n+2  ⇒  n=2, n=−1  case (1)  so first let  f(x)=px^2 +qx+r  p(px^2 +qx+r)^2 +q(px^2 +qx+r)  +r=(9x^2 +6x+2)(px^2 +qx+r)  comparing coefficients  we find p,q,r.  case (2)  f(x)=(p/x)+q  (p/(((p/x)+q)))+q=(9x^2 +6x+2)((p/x)+q)
$${Assuming}\:{f}\left({x}\right)\:{is}\:{a}\:{polynome}.. \\ $$$${n}^{\mathrm{2}} ={n}+\mathrm{2} \\ $$$$\Rightarrow\:\:{n}=\mathrm{2},\:{n}=−\mathrm{1} \\ $$$${case}\:\left(\mathrm{1}\right) \\ $$$${so}\:{first}\:{let}\:\:{f}\left({x}\right)={px}^{\mathrm{2}} +{qx}+{r} \\ $$$${p}\left({px}^{\mathrm{2}} +{qx}+{r}\right)^{\mathrm{2}} +{q}\left({px}^{\mathrm{2}} +{qx}+{r}\right) \\ $$$$+{r}=\left(\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{2}\right)\left({px}^{\mathrm{2}} +{qx}+{r}\right) \\ $$$${comparing}\:{coefficients} \\ $$$${we}\:{find}\:{p},{q},{r}. \\ $$$${case}\:\left(\mathrm{2}\right) \\ $$$${f}\left({x}\right)=\frac{{p}}{{x}}+{q} \\ $$$$\frac{{p}}{\left(\frac{{p}}{{x}}+{q}\right)}+{q}=\left(\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{2}\right)\left(\frac{{p}}{{x}}+{q}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *