Menu Close

f-function-C-f-1-f-2-let-take-a-k-f-k-0-k-prove-that-a-n-1-1-n-1-k-0-n-a-k-a-n-k-




Question Number 30750 by abdo imad last updated on 25/Feb/18
f function C^∞  /f^′ =1+f^2   let take a_k =((f^((k)) (0))/(k!))   prove that a_(n+1) = (1/(n+1)) Σ_(k=0) ^n  a_k   a_(n−k)
$${f}\:{function}\:{C}^{\infty} \:/{f}^{'} =\mathrm{1}+{f}^{\mathrm{2}} \:\:{let}\:{take}\:{a}_{{k}} =\frac{{f}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\: \\ $$$${prove}\:{that}\:{a}_{{n}+\mathrm{1}} =\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{a}_{{k}} \:\:{a}_{{n}−{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *