Menu Close

f-function-contnue-on-0-1-prove-that-lim-n-n-0-1-t-n-f-t-dt-f-1-




Question Number 28679 by abdo imad last updated on 28/Jan/18
f function contnue on [0,1] .prove that  lim_(n→+∞)   n∫_0 ^1   t^n f(t)dt=f(1).
ffunctioncontnueon[0,1].provethatlimn+n01tnf(t)dt=f(1).
Commented by abdo imad last updated on 29/Jan/18
let put t^n =x ⇔t= x^(1/n)   and  I_n = n ∫_0 ^1  x f(x^(1/n) )(1/n) x^((1/n)−1) dx  = ∫_0 ^1   x^(1/n)  f(x^(1/n) )dx = ∫_0 ^1   ψ_n (x)dx with  ψ_n (x)= x^(1/n)   f( x^(1/n) )  ψ_(nn→+∞)   →^(c.s.)  f(1)  so  ∫_0 ^1  ψ_n (x)dx_(n→+∞) → ∫_0 ^1 f(1)dx=f(1).
letputtn=xt=x1nandIn=n01xf(x1n)1nx1n1dx=01x1nf(x1n)dx=01ψn(x)dxwithψn(x)=x1nf(x1n)ψnn+c.s.f(1)so01ψn(x)dxn+01f(1)dx=f(1).

Leave a Reply

Your email address will not be published. Required fields are marked *