Menu Close

f-function-contnue-on-0-1-prove-that-lim-n-n-0-1-t-n-f-t-dt-f-1-




Question Number 28679 by abdo imad last updated on 28/Jan/18
f function contnue on [0,1] .prove that  lim_(n→+∞)   n∫_0 ^1   t^n f(t)dt=f(1).
$${f}\:{function}\:{contnue}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:.{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}} {f}\left({t}\right){dt}={f}\left(\mathrm{1}\right). \\ $$
Commented by abdo imad last updated on 29/Jan/18
let put t^n =x ⇔t= x^(1/n)   and  I_n = n ∫_0 ^1  x f(x^(1/n) )(1/n) x^((1/n)−1) dx  = ∫_0 ^1   x^(1/n)  f(x^(1/n) )dx = ∫_0 ^1   ψ_n (x)dx with  ψ_n (x)= x^(1/n)   f( x^(1/n) )  ψ_(nn→+∞)   →^(c.s.)  f(1)  so  ∫_0 ^1  ψ_n (x)dx_(n→+∞) → ∫_0 ^1 f(1)dx=f(1).
$${let}\:{put}\:{t}^{{n}} ={x}\:\Leftrightarrow{t}=\:{x}^{\frac{\mathrm{1}}{{n}}} \:\:{and}\:\:{I}_{{n}} =\:{n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{f}\left({x}^{\frac{\mathrm{1}}{{n}}} \right)\frac{\mathrm{1}}{{n}}\:{x}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{\frac{\mathrm{1}}{{n}}} \:{f}\left({x}^{\frac{\mathrm{1}}{{n}}} \right){dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\psi_{{n}} \left({x}\right){dx}\:{with} \\ $$$$\psi_{{n}} \left({x}\right)=\:{x}^{\frac{\mathrm{1}}{{n}}} \:\:{f}\left(\:{x}^{\frac{\mathrm{1}}{{n}}} \right)\:\:\psi_{{nn}\rightarrow+\infty} \:\:\rightarrow^{{c}.{s}.} \:{f}\left(\mathrm{1}\right)\:\:{so} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\psi_{{n}} \left({x}\right){dx}_{{n}\rightarrow+\infty} \rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left(\mathrm{1}\right){dx}={f}\left(\mathrm{1}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *