Menu Close

f-function-integrable-on-a-b-is-max-a-b-f-x-dx-a-b-maxf-x-dx-if-not-give-a-opposite-example-




Question Number 63389 by mathmax by abdo last updated on 03/Jul/19
f function integrable on [a,b]  is max ∫_a ^b f(x)dx =∫_a ^b  maxf(x)dx?  if not give a opposite example .
$${f}\:{function}\:{integrable}\:{on}\:\left[{a},{b}\right] \\ $$$${is}\:{max}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx}\:=\int_{{a}} ^{{b}} \:{maxf}\left({x}\right){dx}?\:\:{if}\:{not}\:{give}\:{a}\:{opposite}\:{example}\:. \\ $$
Commented by MJS last updated on 03/Jul/19
opposite example  ∫_a ^b (1−x^2 )dx=(1/3)(a^3 −b^3 )−(a−b)  max ((1/3)(a^3 −b^3 )−(a−b)) =(4/3) with a=−1∧b=1    max (1−x^2 ) =1 with x=0  ∫_(−1) ^1 1dx=2  (4/3)≠2
$$\mathrm{opposite}\:\mathrm{example} \\ $$$$\underset{{a}} {\overset{{b}} {\int}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\left({a}^{\mathrm{3}} −{b}^{\mathrm{3}} \right)−\left({a}−{b}\right) \\ $$$$\mathrm{max}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\left({a}^{\mathrm{3}} −{b}^{\mathrm{3}} \right)−\left({a}−{b}\right)\right)\:=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{with}\:{a}=−\mathrm{1}\wedge{b}=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{max}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:=\mathrm{1}\:\mathrm{with}\:{x}=\mathrm{0} \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{1}{dx}=\mathrm{2} \\ $$$$\frac{\mathrm{4}}{\mathrm{3}}\neq\mathrm{2} \\ $$
Commented by mathmax by abdo last updated on 03/Jul/19
thanks sir mjs.
$${thanks}\:{sir}\:{mjs}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *