Menu Close

f-integrable-continue-on-a-b-let-m-inf-f-x-and-M-sup-f-x-x-a-b-prove-that-b-a-2-a-b-f-x-dx-a-b-dx-f-x-b-a-2-4-m-M-2-mM-




Question Number 107283 by mathmax by abdo last updated on 09/Aug/20
f integrable continue on [a,b] let m =inf f(x) and M=sup f(x)  (x ∈[a,b] prove that       (b−a)^2 ≤∫_a ^b f(x)dx×∫_a ^b  (dx/(f(x)))≤(((b−a)^2 )/4)(((m+M)^2 )/(mM))
$$\mathrm{f}\:\mathrm{integrable}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{let}\:\mathrm{m}\:=\mathrm{inf}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{M}=\mathrm{sup}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{x}\:\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \leqslant\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}×\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)}\leqslant\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{4}}\frac{\left(\mathrm{m}+\mathrm{M}\right)^{\mathrm{2}} }{\mathrm{mM}}\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *