Menu Close

f-is-a-continue-and-positive-function-on-a-b-with-a-lt-b-let-m-max-x-a-b-f-x-prove-that-lim-n-1-b-a-a-b-f-n-x-dx-1-n-




Question Number 33167 by abdo imad last updated on 11/Apr/18
f is a continue and positive function on [a,b] with a<b  let m =max_(x∈[a,b])  f(x) prove that  lim_(n→∞)   ( (1/(b−a)) ∫_a ^b  f^n (x)dx)^(1/n)
$${f}\:{is}\:{a}\:{continue}\:{and}\:{positive}\:{function}\:{on}\:\left[{a},{b}\right]\:{with}\:{a}<{b} \\ $$$${let}\:{m}\:={max}_{{x}\in\left[{a},{b}\right]} \:{f}\left({x}\right)\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}^{{n}} \left({x}\right){dx}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$
Commented by abdo imad last updated on 12/Apr/18
prove that m=lim_(n→∞) ( (1/(b−a))∫_a ^b  f^n (x)dx)^(1/n)  .
$${prove}\:{that}\:{m}={lim}_{{n}\rightarrow\infty} \left(\:\frac{\mathrm{1}}{{b}−{a}}\int_{{a}} ^{{b}} \:{f}^{{n}} \left({x}\right){dx}\right)^{\frac{\mathrm{1}}{{n}}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *