Menu Close

f-is-a-function-increazing-or-decreazing-on-0-1-prove-that-lim-n-1-n-q-1-n-f-q-n-0-1-f-t-dt-




Question Number 30412 by abdo imad last updated on 22/Feb/18
f is a function increazing(or decreazing)on ]0,1]  prove that lim_(n→∞)  (1/n)Σ_(q=1) ^n f((q/n))=∫_0 ^1 f(t)dt.
$$\left.{f}\left.\:{is}\:{a}\:{function}\:{increazing}\left({or}\:{decreazing}\right){on}\:\right]\mathrm{0},\mathrm{1}\right] \\ $$$${prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\sum_{{q}=\mathrm{1}} ^{{n}} {f}\left(\frac{{q}}{{n}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *