Menu Close

f-is-a-function-positive-and-C-1-1-find-f-2-f-1-f-dx-2-let-A-n-0-1-x-n-2-x-1-x-n-calculate-A-n-and-lim-n-A-n-




Question Number 38123 by maxmathsup by imad last updated on 22/Jun/18
f is a function positive  and C^1     1) find ∫    (f^′ /(2(√f)(√(1+f))))dx  2)let  A_n = ∫_0 ^1     (x^(n/2) /(x(√(1+x^n ))))  calculate A_n   and lim_(n→+∞)  A_n
fisafunctionpositiveandC11)findf2f1+fdx2)letAn=01xn2x1+xncalculateAnandlimn+An
Commented by prof Abdo imad last updated on 22/Jun/18
changement (√f)=u (u function!) give  ∫  (f^′ /(2(√f)(√(1+f))))dx=∫ ((2u^′ u)/(2u(√(1+u^2 ))))dx  =∫    (u^′ /( (√(1+u^2 ))))dx=ln(u +(√(1+u^2 ))) +c  =ln((√f) +(√(1+f))) +c    2) we have A_n  = ∫_0 ^1     (x^(n/2) /(x(√(1+x^n ))))dx   changement x^n =t give x=t^(1/n)   and  A_n  = ∫_0 ^1    (t^(1/2) /(t^((1/n) ) (√(1+t)))) (1/n)t^((1/n) −1) dt  =(1/n) ∫_0 ^1     (dt/( (√t)(√(1+t)))) =_((√t)=u)   (1/n)∫_0 ^1     ((2udu)/(u(√(1+u^2 ))))  = (2/n)[ln(u +(√(1+u^2 )))]_0 ^1   =(2/n){ ln(1+(√2))}
changementf=u(ufunction!)givef2f1+fdx=2uu2u1+u2dx=u1+u2dx=ln(u+1+u2)+c=ln(f+1+f)+c2)wehaveAn=01xn2x1+xndxchangementxn=tgivex=t1nandAn=01t12t1n1+t1nt1n1dt=1n01dtt1+t=t=u1n012uduu1+u2=2n[ln(u+1+u2)]01=2n{ln(1+2)}
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
1)∫((df/dx)/(2(√f) (√(1+f))))dx  ∫(df/(2(√f) (√(1+f))))  t^2 =1+f  ∫((2tdt)/(2(√(t^2 −1)) ×t))  ∫(dt/( (√(t^2 −1))))  use formula ∫(dx/( (√(x^2 −a^2 ))))  ln(t+(√(t^2 −1)) )+c  ln((√(1+f)) +(√f) )+c
1)dfdx2f1+fdxdf2f1+ft2=1+f2tdt2t21×tdtt21useformuladxx2a2ln(t+t21)+cln(1+f+f)+c
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
x^n +1=t^2     2tdt =nx^(n−1) dx    2tdt=nx^n (dx/x)  ((2tdt)/(n(t^2 −1)))=(dx/x)  ∫_1 ^((√2) ) ((2tdt)/(n(t^2 −1)))×(((√(t^2 −1)) )/t)  =(2/n)∫_1 ^(√2) (√(t^2 −1)) dt  (1/n)∣(t/2)(√(t^2 −1)) −(1/2)ln(t+(√(t^2 −1))) ∣_1 ^((√2) )   (1/n){(((√2) )/2)−(1/2)ln((√2) +1)}  =(1/n){(((√2) )/2)−(1/2)ln((√2) +1)}  when n→∞  value of intregation is 0  use formula∫(√(x^2 −a^2  )) dx
xn+1=t22tdt=nxn1dx2tdt=nxndxx2tdtn(t21)=dxx122tdtn(t21)×t21t=2n12t21dt1nt2t2112ln(t+t21)121n{2212ln(2+1)}=1n{2212ln(2+1)}whennvalueofintregationis0useformulax2a2dx
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18

Leave a Reply

Your email address will not be published. Required fields are marked *