Menu Close

f-is-continuous-on-R-such-that-0-f-t-dt-is-convergent-Determinate-lim-x-x-x-2-f-t-dt-




Question Number 169792 by mathocean1 last updated on 08/May/22
f is continuous on R^+  such that  ∫_0 ^(+∞) f(t)dt is convergent.  Determinate lim_(x→+∞) ∫_x ^x^2  f(t)dt.
$${f}\:{is}\:{continuous}\:{on}\:\mathbb{R}^{+} \:{such}\:{that} \\ $$$$\int_{\mathrm{0}} ^{+\infty} {f}\left({t}\right){dt}\:{is}\:{convergent}. \\ $$$${Determinate}\:\underset{{x}\rightarrow+\infty} {{lim}}\int_{{x}} ^{{x}^{\mathrm{2}} } {f}\left({t}\right){dt}. \\ $$
Answered by aleks041103 last updated on 08/May/22
let F(x)=∫_0 ^( x) f(t)dt  then by problem construction lim_(x→∞) F(x)=a  lim_(x→∞)  ∫_x ^( x^2 ) f(t)dt=lim_(x→∞) [F(x^2 )−F(x)]=  =a−a=0  ⇒Ans. 0
$${let}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} {f}\left({t}\right){dt} \\ $$$${then}\:{by}\:{problem}\:{construction}\:\underset{{x}\rightarrow\infty} {{lim}F}\left({x}\right)={a} \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\:\int_{{x}} ^{\:{x}^{\mathrm{2}} } {f}\left({t}\right){dt}=\underset{{x}\rightarrow\infty} {{lim}}\left[{F}\left({x}^{\mathrm{2}} \right)−{F}\left({x}\right)\right]= \\ $$$$={a}−{a}=\mathrm{0} \\ $$$$\Rightarrow{Ans}.\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *