Menu Close

f-is-continuous-on-R-such-that-0-f-t-dt-is-convergent-Determinate-lim-x-x-x-2-f-t-dt-




Question Number 169792 by mathocean1 last updated on 08/May/22
f is continuous on R^+  such that  ∫_0 ^(+∞) f(t)dt is convergent.  Determinate lim_(x→+∞) ∫_x ^x^2  f(t)dt.
fiscontinuousonR+suchthat0+f(t)dtisconvergent.Determinatelimx+xx2f(t)dt.
Answered by aleks041103 last updated on 08/May/22
let F(x)=∫_0 ^( x) f(t)dt  then by problem construction lim_(x→∞) F(x)=a  lim_(x→∞)  ∫_x ^( x^2 ) f(t)dt=lim_(x→∞) [F(x^2 )−F(x)]=  =a−a=0  ⇒Ans. 0
letF(x)=0xf(t)dtthenbyproblemconstructionlimFx(x)=alimxxx2f(t)dt=limx[F(x2)F(x)]==aa=0Ans.0

Leave a Reply

Your email address will not be published. Required fields are marked *