Menu Close

f-is-derivable-in-R-1-Demonstrate-that-if-f-is-pair-f-is-odd-unpair-1-Demonstrate-that-if-f-is-unpair-f-is-pair-Please-help-me-sirs-




Question Number 79876 by mathocean1 last updated on 28/Jan/20
f is derivable in R.  1) Demonstrate that if f is pair , f ′ is odd(unpair).  1) Demonstrate that if f is unpair , f ′ is pair.    Please help me sirs
fisderivableinR.1)Demonstratethatiffispair,fisodd(unpair).1)Demonstratethatiffisunpair,fispair.Pleasehelpmesirs
Commented by MJS last updated on 29/Jan/20
if “pair” means f(−x)=f(x)  and “unpair” means f(−x)=−f(x)  then i.e.  y=cos x and y=x^2 ; y=x^4  are pair  y=sin x and y=x; y=x^3  are unpair  draw them and try to understand how the  slopes must look like
ifpairmeansf(x)=f(x)andunpairmeansf(x)=f(x)theni.e.y=cosxandy=x2;y=x4arepairy=sinxandy=x;y=x3areunpairdrawthemandtrytounderstandhowtheslopesmustlooklike
Answered by Henri Boucatchou last updated on 29/Jan/20
  f  is  derivable  for  all x_0 ∈R,  that′s   lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )  f  pair  ⇒  lim_(x−→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((f(x)−f(x_0 ))/(x−x_0 ))=f ′(x_0 )    ⇒ f ′(−x_0 )=−f ′(x_0 )  e.i.  f ′  is  odd;  f  unpair  ⇒  lim_(x→x_0 ) −((f(−x)−f(−x_0 ))/((−x)−(−x_0 )))=−f ′(−x_0 )=lim_(x→x_0 ) ((−[f(x)−f(x_0 )])/(x−x_0 ))=−f ′(x_0 )    ⇒−f ′(−x_0 )=−f ′(x_0 )    ⇒  f ′(−x_0 )=f ′(x_0 )  e.i.  f ′  is  pair.
fisderivableforallx0R,thatslimxx0f(x)f(x0)xx0=f(x0)fpairlimxx0f(x)f(x0)(x)(x0)=f(x0)=limxx0f(x)f(x0)xx0=f(x0)f(x0)=f(x0)e.i.fisodd;funpairlimxx0f(x)f(x0)(x)(x0)=f(x0)=limxx0[f(x)f(x0)]xx0=f(x0)f(x0)=f(x0)f(x0)=f(x0)e.i.fispair.

Leave a Reply

Your email address will not be published. Required fields are marked *