Menu Close

f-length-of-a-rectangle-is-reduced-by-5-umits-and-its-breadth-is-increasesd-3-units-then-area-of-rectangle-is-reduced-by-8-sq-units-if-lenghth-is-reduced-3-units-and-breadth-is-increased-by-2-units




Question Number 26528 by bbbbbb last updated on 26/Dec/17
f length  of a rectangle is reduced by 5   umits and its breadth is increasesd  3 units then area of rectangle is reduced  by 8 sq units if lenghth is reduced  3 units and breadth is increased by   2 units then area of rectangle  will increased by 67 sq units .   then find length and breadth of rectangle
$${f}\:{length}\:\:{of}\:{a}\:{rectangle}\:{is}\:{reduced}\:{by}\:\mathrm{5}\: \\ $$$${umits}\:{and}\:{its}\:{breadth}\:{is}\:{increasesd} \\ $$$$\mathrm{3}\:{units}\:{then}\:{area}\:{of}\:{rectangle}\:{is}\:{reduced} \\ $$$${by}\:\mathrm{8}\:{sq}\:{units}\:{if}\:{lenghth}\:{is}\:{reduced} \\ $$$$\mathrm{3}\:{units}\:{and}\:{breadth}\:{is}\:{increased}\:{by}\: \\ $$$$\mathrm{2}\:{units}\:{then}\:{area}\:{of}\:{rectangle} \\ $$$${will}\:{increased}\:{by}\:\mathrm{67}\:{sq}\:{units}\:.\: \\ $$$${then}\:{find}\:{length}\:{and}\:{breadth}\:{of}\:{rectangle} \\ $$
Answered by Rasheed.Sindhi last updated on 26/Dec/17
Let length & width of original rectangle  are x & y respectively.  xy−(x−5)(y+3)=8.......(i)  (x−3)(y+2)−xy=67......(ii)  (i)⇒xy−xy+15−3x+5y=8                           3x−5y=7.........(iii)  (ii)⇒xy+2x−3y−6−xy=67                           2x−3y=73.......(iv)   (iii)⇒6x−10y=14   (iv)⇒6x−9y=219                  −y=−205                     y=205  3x−5(205)=7  x=((7+1025)/3)=((1032)/3)=344  Length=344 , Breadth=205
$$\mathrm{Let}\:\mathrm{length}\:\&\:\mathrm{width}\:\mathrm{of}\:\mathrm{original}\:\mathrm{rectangle} \\ $$$$\mathrm{are}\:\mathrm{x}\:\&\:\mathrm{y}\:\mathrm{respectively}. \\ $$$$\mathrm{xy}−\left(\mathrm{x}−\mathrm{5}\right)\left(\mathrm{y}+\mathrm{3}\right)=\mathrm{8}…….\left(\mathrm{i}\right) \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{y}+\mathrm{2}\right)−\mathrm{xy}=\mathrm{67}……\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)\Rightarrow\mathrm{xy}−\mathrm{xy}+\mathrm{15}−\mathrm{3x}+\mathrm{5y}=\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3x}−\mathrm{5y}=\mathrm{7}………\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{ii}\right)\Rightarrow\mathrm{xy}+\mathrm{2x}−\mathrm{3y}−\mathrm{6}−\mathrm{xy}=\mathrm{67} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2x}−\mathrm{3y}=\mathrm{73}…….\left(\mathrm{iv}\right) \\ $$$$\:\left(\mathrm{iii}\right)\Rightarrow\mathrm{6x}−\mathrm{10y}=\mathrm{14} \\ $$$$\:\left(\mathrm{iv}\right)\Rightarrow\mathrm{6x}−\mathrm{9y}=\mathrm{219} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{y}=−\mathrm{205} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}=\mathrm{205} \\ $$$$\mathrm{3x}−\mathrm{5}\left(\mathrm{205}\right)=\mathrm{7} \\ $$$$\mathrm{x}=\frac{\mathrm{7}+\mathrm{1025}}{\mathrm{3}}=\frac{\mathrm{1032}}{\mathrm{3}}=\mathrm{344} \\ $$$$\mathrm{Length}=\mathrm{344}\:,\:\mathrm{Breadth}=\mathrm{205} \\ $$
Commented by bbbbbb last updated on 26/Dec/17
thank u
$${thank}\:{u} \\ $$
Commented by AHSoomro last updated on 26/Dec/17
Great Boss
$$\mathrm{Great}\:\mathrm{Boss} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *