Menu Close

f-n-4f-n-1-4f-n-2-n-2-and-f-0-2-f-1-5-




Question Number 129403 by bemath last updated on 15/Jan/21
 f(n) = 4f(n−1) −4f(n−2) + n^2    and f(0)=2 , f(1)=5
f(n)=4f(n1)4f(n2)+n2andf(0)=2,f(1)=5
Commented by talminator2856791 last updated on 15/Jan/21
what is the question?
whatisthequestion?
Answered by mr W last updated on 15/Jan/21
let f_n =g_n +An^2 +Bn+C  g_n +An^2 +Bn+C=4g_(n−1) −4g_(n−2) +4A[(n−1)^2 −(n−2)^2 ]+4B[(n−1)−(n−2)]+4(C−C)+n^2   g_n +An^2 +Bn+C=4g_(n−1) −4g_(n−2) +8An−12A+4B+n^2   ⇒A=1  ⇒B=8  ⇒C=20  g_n −4g_(n−1) +4g_(n−2) =0  t^2 −4t+4=0  (t−2)^2 =0  ⇒t=2  g_n =(α+βn)2^n   ⇒f(n)=(α+βn)2^n +n^2 +8n+20  f(0)=α+20=2 ⇒α=−18  f(1)=(−18+β)2+1+8+20=5 ⇒β=6  ⇒f(n)=6(n−3)2^n +n^2 +8n+20
letfn=gn+An2+Bn+Cgn+An2+Bn+C=4gn14gn2+4A[(n1)2(n2)2]+4B[(n1)(n2)]+4(CC)+n2gn+An2+Bn+C=4gn14gn2+8An12A+4B+n2A=1B=8C=20gn4gn1+4gn2=0t24t+4=0(t2)2=0t=2gn=(α+βn)2nf(n)=(α+βn)2n+n2+8n+20f(0)=α+20=2α=18f(1)=(18+β)2+1+8+20=5β=6f(n)=6(n3)2n+n2+8n+20

Leave a Reply

Your email address will not be published. Required fields are marked *