Question Number 33032 by rahul 19 last updated on 09/Apr/18
$${f}:{N}\rightarrow{R} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2005}. \\ $$$${and}\: \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+……+{f}\left({n}\right)=\:{n}^{\mathrm{2}} \:{f}\left({n}\right),{n}>\mathrm{1}. \\ $$$${Then}\:{f}\left(\mathrm{2004}\right)=? \\ $$
Commented by Joel578 last updated on 09/Apr/18
$$\mathrm{The}\:\mathrm{denomitator}\:\mathrm{form}\:\mathrm{a}\:\mathrm{series} \\ $$$$\underset{\smile} {\mathrm{1}\:\:\:\:\:\mathrm{3}}\underset{\smile} {\:\:\:\:\:\:\mathrm{6}}\underset{\smile} {\:\:\:\:\:\:\mathrm{10}}\underset{\smile} {\:\:\:\:\:\:\mathrm{15}}\underset{\smile} {\:\:\:\:\:\:\mathrm{21}},\:… \\ $$$$\:+\mathrm{2}\:\:+\mathrm{3}\:\:+\mathrm{4}\:\:\:\:\:+\mathrm{5}\:\:\:\:\:+\mathrm{6} \\ $$$$ \\ $$$$\mathrm{Suppose}\:\mathrm{the}\:\mathrm{general}\:\mathrm{term}\:{T}_{{n}} \:=\:{an}^{\mathrm{2}} \:+\:{bn}\:+\:{c} \\ $$$${T}_{\mathrm{1}} \:=\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{1} \\ $$$${T}_{\mathrm{2}} \:=\:\mathrm{4}{a}\:+\:\mathrm{2}{b}\:+\:{c}\:=\:\mathrm{3} \\ $$$${T}_{\mathrm{3}} \:=\:\mathrm{9}{a}\:+\:\mathrm{3}{b}\:+\:{c}\:=\:\mathrm{6} \\ $$$$\mathrm{After}\:\mathrm{few}\:\mathrm{calculations},\:\mathrm{you}\:\mathrm{will}\:\mathrm{found} \\ $$$${a}\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:{b}\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:{c}\:=\:\mathrm{0} \\ $$$$\rightarrow\:{T}_{{n}} \:=\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\:+\:\frac{{n}}{\mathrm{2}}\:=\:\frac{{n}}{\mathrm{2}}\left({n}\:+\:\mathrm{1}\right) \\ $$
Commented by Joel578 last updated on 09/Apr/18
$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is} \\ $$$${f}\left(\mathrm{1}\right)\:+\:{f}\left(\mathrm{2}\right)\:+\:…\:+\:{f}\left({n}\right)\:=\:{n}^{\mathrm{2}} \:{f}\left({n}\right) \\ $$
Commented by rahul 19 last updated on 09/Apr/18
$${Joel}\:{sir},\:{suppose}\:{we}\:{are}\:{not}\:{able}\:{to} \\ $$$${see}\:{the}\:{pattern}\:{at}\:{the}\:{first}\:{sight}. \\ $$$${Then}\:{how}\:{can}\:{we}\:{find}\:{the}\:{general} \\ $$$${term}\:? \\ $$
Commented by Rasheed.Sindhi last updated on 09/Apr/18
$$\mathrm{Sorry}\:\mathrm{sir}\:\mathrm{I}\:\mathrm{misunderstood}\:\mathrm{then}. \\ $$
Commented by rahul 19 last updated on 09/Apr/18
$${thank}\:{u}\:{so}\:{much}\:{sir}! \\ $$
Answered by Joel578 last updated on 09/Apr/18
$${f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{1}} \\ $$$${f}\left(\mathrm{2}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{3}} \\ $$$${f}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{6}} \\ $$$${f}\left(\mathrm{4}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{10}} \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{15}} \\ $$$$\vdots \\ $$$${f}\left({n}\right)\:=\:\frac{\mathrm{2005}}{\frac{{n}}{\mathrm{2}}\left({n}\:+\:\mathrm{1}\right)} \\ $$$${f}\left(\mathrm{2004}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{1002}\:.\:\mathrm{2005}}\:=\:\frac{\mathrm{1}}{\mathrm{1002}} \\ $$
Commented by rahul 19 last updated on 09/Apr/18
$${thank}\:{u}\:{sir}! \\ $$