Menu Close

f-N-R-f-1-2005-and-f-1-f-2-f-n-n-2-f-n-n-gt-1-Then-f-2004-




Question Number 33032 by rahul 19 last updated on 09/Apr/18
f:N→R  f(1)=2005.  and   f(1)+f(2)+......+f(n)= n^2  f(n),n>1.  Then f(2004)=?
$${f}:{N}\rightarrow{R} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2005}. \\ $$$${and}\: \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+……+{f}\left({n}\right)=\:{n}^{\mathrm{2}} \:{f}\left({n}\right),{n}>\mathrm{1}. \\ $$$${Then}\:{f}\left(\mathrm{2004}\right)=? \\ $$
Commented by Joel578 last updated on 09/Apr/18
The denomitator form a series  1     3_(⌣)       6_(⌣)       10_(⌣)       15_(⌣)       21_(⌣) , ...   +2  +3  +4     +5     +6    Suppose the general term T_n  = an^2  + bn + c  T_1  = a + b + c = 1  T_2  = 4a + 2b + c = 3  T_3  = 9a + 3b + c = 6  After few calculations, you will found  a = (1/2), b = (1/2), c = 0  → T_n  = (n^2 /2) + (n/2) = (n/2)(n + 1)
$$\mathrm{The}\:\mathrm{denomitator}\:\mathrm{form}\:\mathrm{a}\:\mathrm{series} \\ $$$$\underset{\smile} {\mathrm{1}\:\:\:\:\:\mathrm{3}}\underset{\smile} {\:\:\:\:\:\:\mathrm{6}}\underset{\smile} {\:\:\:\:\:\:\mathrm{10}}\underset{\smile} {\:\:\:\:\:\:\mathrm{15}}\underset{\smile} {\:\:\:\:\:\:\mathrm{21}},\:… \\ $$$$\:+\mathrm{2}\:\:+\mathrm{3}\:\:+\mathrm{4}\:\:\:\:\:+\mathrm{5}\:\:\:\:\:+\mathrm{6} \\ $$$$ \\ $$$$\mathrm{Suppose}\:\mathrm{the}\:\mathrm{general}\:\mathrm{term}\:{T}_{{n}} \:=\:{an}^{\mathrm{2}} \:+\:{bn}\:+\:{c} \\ $$$${T}_{\mathrm{1}} \:=\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{1} \\ $$$${T}_{\mathrm{2}} \:=\:\mathrm{4}{a}\:+\:\mathrm{2}{b}\:+\:{c}\:=\:\mathrm{3} \\ $$$${T}_{\mathrm{3}} \:=\:\mathrm{9}{a}\:+\:\mathrm{3}{b}\:+\:{c}\:=\:\mathrm{6} \\ $$$$\mathrm{After}\:\mathrm{few}\:\mathrm{calculations},\:\mathrm{you}\:\mathrm{will}\:\mathrm{found} \\ $$$${a}\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:{b}\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:{c}\:=\:\mathrm{0} \\ $$$$\rightarrow\:{T}_{{n}} \:=\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\:+\:\frac{{n}}{\mathrm{2}}\:=\:\frac{{n}}{\mathrm{2}}\left({n}\:+\:\mathrm{1}\right) \\ $$
Commented by Joel578 last updated on 09/Apr/18
Sir, I think the equation is  f(1) + f(2) + ... + f(n) = n^2  f(n)
$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is} \\ $$$${f}\left(\mathrm{1}\right)\:+\:{f}\left(\mathrm{2}\right)\:+\:…\:+\:{f}\left({n}\right)\:=\:{n}^{\mathrm{2}} \:{f}\left({n}\right) \\ $$
Commented by rahul 19 last updated on 09/Apr/18
Joel sir, suppose we are not able to  see the pattern at the first sight.  Then how can we find the general  term ?
$${Joel}\:{sir},\:{suppose}\:{we}\:{are}\:{not}\:{able}\:{to} \\ $$$${see}\:{the}\:{pattern}\:{at}\:{the}\:{first}\:{sight}. \\ $$$${Then}\:{how}\:{can}\:{we}\:{find}\:{the}\:{general} \\ $$$${term}\:? \\ $$
Commented by Rasheed.Sindhi last updated on 09/Apr/18
Sorry sir I misunderstood then.
$$\mathrm{Sorry}\:\mathrm{sir}\:\mathrm{I}\:\mathrm{misunderstood}\:\mathrm{then}. \\ $$
Commented by rahul 19 last updated on 09/Apr/18
thank u so much sir!
$${thank}\:{u}\:{so}\:{much}\:{sir}! \\ $$
Answered by Joel578 last updated on 09/Apr/18
f(1) = ((2005)/1)  f(2) = ((2005)/3)  f(3) = ((2005)/6)  f(4) = ((2005)/(10))  f(5) = ((2005)/(15))  ⋮  f(n) = ((2005)/((n/2)(n + 1)))  f(2004) = ((2005)/(1002 . 2005)) = (1/(1002))
$${f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{1}} \\ $$$${f}\left(\mathrm{2}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{3}} \\ $$$${f}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{6}} \\ $$$${f}\left(\mathrm{4}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{10}} \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{15}} \\ $$$$\vdots \\ $$$${f}\left({n}\right)\:=\:\frac{\mathrm{2005}}{\frac{{n}}{\mathrm{2}}\left({n}\:+\:\mathrm{1}\right)} \\ $$$${f}\left(\mathrm{2004}\right)\:=\:\frac{\mathrm{2005}}{\mathrm{1002}\:.\:\mathrm{2005}}\:=\:\frac{\mathrm{1}}{\mathrm{1002}} \\ $$
Commented by rahul 19 last updated on 09/Apr/18
thank u sir!
$${thank}\:{u}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *