f-Q-Q-f-x-f-y-y-f-x-x-y-Q- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 154647 by mathdanisur last updated on 20/Sep/21 f:Q→Qf(x+f(y))=y+f(x)∀x;y∈Q Answered by TheHoneyCat last updated on 20/Sep/21 Idemotebyfn:f∘…∘fntimesIwontpreciseit,butwhenavalue(x,y,z…)isnotdefineditmeansitcanbeanyelementofQletIbetheidentityfunctionIamassumingthatQherestandsforQthesetofrationnalsbutnotethatthisproofworksonanygroupwere−2,−1,0,1,2arealldistinctIamalsoassumingthatthequestionis:“Findallfsuchthat[yourproprety]″evaluatingforx=0weget:f2(y)=y+f(0)applyingfoverthatequalityweget:f3(y)=f(y+f(0))=0+f(y)hence:f3=f(1)f(x+f(y))=y+f(x)f(−f(y)+f(y))=y+f(f(y))i.e.f(0)−y=f2(y)sof3(y)=f(−y+f(0))=f(−y)i.e.f3=f∘(−I)hencef=f∘(−I)(2)y+f(x)=y+f(−x)=f(−x+f(y))=f(x+f(y))f(0)=f(2f(y))f(2f(y))=y+f(y)=f(0)sof2=f(3)f(x+f(y))=y+f(x)f2(y)=f(y)+f(0)sof(0)=0sof(y)=−ybuttheny!=0⇒f(−y)!=f(y)thiscontradicts(2)thereforethereisnosuchfunction Commented by mathdanisur last updated on 20/Sep/21 PerfectsolutionSer,thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-89107Next Next post: let-be-A-1-1-0-1-B-1-0-1-1-find-e-A-e-B-1-e-A-exponential-matrix- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.