Menu Close

f-Q-Q-f-x-f-y-y-f-x-x-y-Q-




Question Number 154647 by mathdanisur last updated on 20/Sep/21
f : Q → Q  f(x + f(y)) = y + f(x)  ∀ x;y ∈ Q
f:QQf(x+f(y))=y+f(x)x;yQ
Answered by TheHoneyCat last updated on 20/Sep/21
I demote by f^n  : f○...○f n times  I wont precise it, but when a value (x,y,z...) is not defined it means it can be any element of Q  let I be the identity function  I am assuming that Q here stands for Q the set of rationnals  but note that this proof works on any group were −2,−1,0,1,2 are all distinct  I am also assuming that the question is:  “Find all f such that [your proprety]”    evaluating for x=0 we get:  f^2 (y)=y+f(0)  applying f over that equality we get:  f^3 (y)=f(y+f(0))=0+f(y)  hence: f^3 =f      (1)    f(x+f(y))=y+f(x)  f(−f(y)+f(y))=y+f(f(y))  i.e. f(0)−y=f^2 (y)  so f^3 (y)=f(−y+f(0))=f(−y)  i.e. f^3 =f○(−I)  hence f=f○(−I) (2)    y+f(x)=y+f(−x)=f(−x+f(y))=f(x+f(y))  f(0)=f(2f(y))  f(2f(y))=y+f(y)=f(0)  so f^2 =f (3)    f(x+f(y))=y+f(x)  f^2 (y)=f(y)+f(0) so f(0)=0  so f(y)=−y  but then y!=0 ⇒ f(−y)!=f(y)  this contradicts (2)     therefore there is no such function_■
Idemotebyfn:ffntimesIwontpreciseit,butwhenavalue(x,y,z)isnotdefineditmeansitcanbeanyelementofQletIbetheidentityfunctionIamassumingthatQherestandsforQthesetofrationnalsbutnotethatthisproofworksonanygroupwere2,1,0,1,2arealldistinctIamalsoassumingthatthequestionis:Findallfsuchthat[yourproprety]evaluatingforx=0weget:f2(y)=y+f(0)applyingfoverthatequalityweget:f3(y)=f(y+f(0))=0+f(y)hence:f3=f(1)f(x+f(y))=y+f(x)f(f(y)+f(y))=y+f(f(y))i.e.f(0)y=f2(y)sof3(y)=f(y+f(0))=f(y)i.e.f3=f(I)hencef=f(I)(2)y+f(x)=y+f(x)=f(x+f(y))=f(x+f(y))f(0)=f(2f(y))f(2f(y))=y+f(y)=f(0)sof2=f(3)f(x+f(y))=y+f(x)f2(y)=f(y)+f(0)sof(0)=0sof(y)=ybuttheny!=0f(y)!=f(y)thiscontradicts(2)thereforethereisnosuchfunction◼
Commented by mathdanisur last updated on 20/Sep/21
Perfect solution Ser, thanks
PerfectsolutionSer,thanks

Leave a Reply

Your email address will not be published. Required fields are marked *