Menu Close

f-R-R-f-x-x-2-2mx-1-x-0-mx-1-x-gt-0-if-f-x-is-one-one-then-m-lies-in-interval-a-0-c-0-b-0-d-0-




Question Number 122998 by benjo_mathlover last updated on 21/Nov/20
 f:R→R    f(x) =  { ((x^2 +2mx−1 ; x≤0)),((mx−1 ; x>0)) :}  if f(x) is one−one then m lies   in interval   (a) (−∞,0 )     (c) (0,∞)  (b) (−∞, 0 ]     (d) [ 0, ∞ )
$$\:{f}:{R}\rightarrow{R}\: \\ $$$$\:{f}\left({x}\right)\:=\:\begin{cases}{{x}^{\mathrm{2}} +\mathrm{2}{mx}−\mathrm{1}\:;\:{x}\leqslant\mathrm{0}}\\{{mx}−\mathrm{1}\:;\:{x}>\mathrm{0}}\end{cases} \\ $$$${if}\:{f}\left({x}\right)\:{is}\:{one}−{one}\:{then}\:{m}\:{lies}\: \\ $$$${in}\:{interval}\: \\ $$$$\left({a}\right)\:\left(−\infty,\mathrm{0}\:\right)\:\:\:\:\:\left({c}\right)\:\left(\mathrm{0},\infty\right) \\ $$$$\left({b}\right)\:\left(−\infty,\:\mathrm{0}\:\right]\:\:\:\:\:\left({d}\right)\:\left[\:\mathrm{0},\:\infty\:\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *