Menu Close

f-R-R-is-a-differentiable-function-obeying-2f-x-f-xy-f-x-y-for-all-x-y-R-and-f-1-0-f-1-1-Find-f-x-More-questions-may-follow-




Question Number 28124 by ajfour last updated on 20/Jan/18
f(R^+ →R) is a differentiable  function obeying  2f(x)=f(xy)+f((x/y))  for all x,y ∈ R^+  and   f(1)=0, f ′(1)=1 .  Find f(x). More questions may  follow..
$${f}\left({R}^{+} \rightarrow{R}\right)\:{is}\:{a}\:{differentiable} \\ $$$${function}\:{obeying} \\ $$$$\mathrm{2}{f}\left({x}\right)={f}\left({xy}\right)+{f}\left(\frac{{x}}{{y}}\right) \\ $$$${for}\:{all}\:{x},{y}\:\in\:{R}^{+} \:{and}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0},\:{f}\:'\left(\mathrm{1}\right)=\mathrm{1}\:. \\ $$$${Find}\:{f}\left({x}\right).\:{More}\:{questions}\:{may} \\ $$$${follow}.. \\ $$
Commented by prakash jain last updated on 20/Jan/18
y=x  f(x^2 )=2f(x)  f(x)=cln x  check  2cln x=cln x+cln y+cln x−cln y  f′(x)=(c/x)  f′(1)=1⇒c=1  f(x)=ln x
$${y}={x} \\ $$$${f}\left({x}^{\mathrm{2}} \right)=\mathrm{2}{f}\left({x}\right) \\ $$$${f}\left({x}\right)={c}\mathrm{ln}\:{x} \\ $$$${check} \\ $$$$\mathrm{2}{c}\mathrm{ln}\:{x}={c}\mathrm{ln}\:{x}+{c}\mathrm{ln}\:{y}+{c}\mathrm{ln}\:{x}−{c}\mathrm{ln}\:{y} \\ $$$${f}'\left({x}\right)=\frac{{c}}{{x}} \\ $$$${f}'\left(\mathrm{1}\right)=\mathrm{1}\Rightarrow{c}=\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{ln}\:{x} \\ $$
Commented by ajfour last updated on 20/Jan/18
Are the following true:  (i) No. of solutions of f^( −1) (x)=x^5   is 3  (ii)there is at least one point α∈  (0,∞) for which f^( −1) (x)−x^5  > 0  for x∈ (α,∞) ?
$${Are}\:{the}\:{following}\:{true}: \\ $$$$\left({i}\right)\:{No}.\:{of}\:{solutions}\:{of}\:{f}^{\:−\mathrm{1}} \left({x}\right)={x}^{\mathrm{5}} \\ $$$${is}\:\mathrm{3} \\ $$$$\left({ii}\right){there}\:{is}\:{at}\:{least}\:{one}\:{point}\:\alpha\in \\ $$$$\left(\mathrm{0},\infty\right)\:{for}\:{which}\:{f}^{\:−\mathrm{1}} \left({x}\right)−{x}^{\mathrm{5}} \:>\:\mathrm{0} \\ $$$${for}\:{x}\in\:\left(\alpha,\infty\right)\:? \\ $$
Commented by ajfour last updated on 20/Jan/18
thank you Sir.
$${thank}\:{you}\:{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *