Menu Close

f-t-0-t-x-x-dx-




Question Number 180786 by Vynho last updated on 17/Nov/22
f(t)=∫_0 ^t x−⌊x⌋  dx
f(t)=0txxdx
Answered by mr W last updated on 17/Nov/22
let n=⌊t⌋  f(t)=Σ_(k=0) ^(n−1) ∫_k ^(k+1) (x−⌊x⌋)dx+∫_n ^t (x−⌊x⌋)dx  f(t)=Σ_(k=0) ^(n−1) ∫_0 ^1 (k+ξ−k)d(k+ξ)+∫_0 ^(t−n) (n+ξ−n)d(n+ξ)  f(t)=Σ_(k=0) ^(n−1) ∫_0 ^1 ξdξ+∫_0 ^(t−n) ξdξ  f(t)=Σ_(k=0) ^(n−1) ((1/2))+(((t−n)^2 )/2)  f(t)=(n/2)+(((t−n)^2 )/2)  f(t)=((⌊t⌋+(t−⌊t⌋)^2 )/2)
letn=tf(t)=n1k=0kk+1(xx)dx+nt(xx)dxf(t)=n1k=001(k+ξk)d(k+ξ)+0tn(n+ξn)d(n+ξ)f(t)=n1k=001ξdξ+0tnξdξf(t)=n1k=0(12)+(tn)22f(t)=n2+(tn)22f(t)=t+(tt)22

Leave a Reply

Your email address will not be published. Required fields are marked *