Menu Close

F-which-is-the-set-of-funtions-from-R-to-R-is-a-vectorial-space-and-G-a-part-of-F-is-the-set-of-odd-functions-such-as-G-f-F-x-R-f-x-f-x-1-Show-that-G-is-sub-vector-space-of-F-in-R-




Question Number 89530 by mathocean1 last updated on 17/Apr/20
F which is  the set of funtions from R to R   is a vectorial space and G(a part of F) is  the set of odd functions such as  G={ f ∈ F/∀ x∈ R, f(x)=−f(−x)}  1) Show that G is sub vector space of F  in R.
$$\mathrm{F}\:\mathrm{which}\:\mathrm{is}\:\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{funtions}\:\mathrm{from}\:\mathbb{R}\:\mathrm{to}\:\mathbb{R}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{vectorial}\:\mathrm{space}\:\mathrm{and}\:\mathrm{G}\left(\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{F}\right)\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{G}=\left\{\:{f}\:\in\:\mathrm{F}/\forall\:\mathrm{x}\in\:\mathbb{R},\:{f}\left({x}\right)=−{f}\left(−{x}\right)\right\} \\ $$$$\left.\mathrm{1}\right)\:{S}\mathrm{how}\:\mathrm{that}\:\mathrm{G}\:\mathrm{is}\:\mathrm{sub}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{of}\:\mathrm{F} \\ $$$$\mathrm{in}\:\mathbb{R}. \\ $$
Commented by arcana last updated on 18/Apr/20
The function zero f(x)=0, ∀x∈R, so  f(x)=0=f(−x)⇒0∈G. G≠φ.  G⊆F.  let be f, g ∈G  (f+g)(x)=f(x)+g(x)                      =−f(−x)+[−g(−x)]                      =−(f+g)(−x), ∀x∈R  f+g ∈G.  for α∈R, (αf)(x)=α(−f(−x))=−(αf)(−x)  ⇒αf ∈G.
$$\mathrm{The}\:\mathrm{function}\:\mathrm{zero}\:{f}\left({x}\right)=\mathrm{0},\:\forall{x}\in\mathbb{R},\:\mathrm{so} \\ $$$${f}\left({x}\right)=\mathrm{0}={f}\left(−{x}\right)\Rightarrow\mathrm{0}\in\mathrm{G}.\:\mathrm{G}\neq\phi. \\ $$$$\mathrm{G}\subseteq\mathrm{F}. \\ $$$$\mathrm{let}\:\mathrm{be}\:{f},\:{g}\:\in\mathrm{G} \\ $$$$\left({f}+{g}\right)\left({x}\right)={f}\left({x}\right)+{g}\left({x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−{f}\left(−{x}\right)+\left[−{g}\left(−{x}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\left({f}+{g}\right)\left(−{x}\right),\:\forall{x}\in\mathbb{R} \\ $$$${f}+{g}\:\in\mathrm{G}. \\ $$$$\mathrm{for}\:\alpha\in\mathbb{R},\:\left(\alpha{f}\right)\left({x}\right)=\alpha\left(−{f}\left(−{x}\right)\right)=−\left(\alpha{f}\right)\left(−{x}\right) \\ $$$$\Rightarrow\alpha{f}\:\in\mathrm{G}. \\ $$$$ \\ $$
Commented by mathocean1 last updated on 18/Apr/20
thank you sir!
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *