Question Number 65290 by mathmax by abdo last updated on 27/Jul/19

Commented by mathmax by abdo last updated on 28/Jul/19
![1) f(x) =∫_0 ^1 (dt/(x+e^t )) =∫_0 ^1 (e^(−t) /(1+xe^(−t) ))dt =−(1/x)∫_0 ^1 ((−xe^(−t) )/(1+xe^(−t) ))dt =−(1/x)[ln(1+xe^(−t) )]_(t=0) ^1 =−(1/x){ln(1+xe^(−1) )−ln(1+x)} ⇒ f(x) =((ln(1+x))/x) −((ln(1+xe^(−1) ))/x) if x≠0 2)∫_0 ^1 (dt/(2+e^t )) =f(2) =((ln(3))/2) −((ln(1+2e^(−1) ))/2) 3)we have f^′ (x) =−∫_0 ^1 (dt/((x+e^t )^2 )) =−g(x) ⇒g(x)=−f^′ (x) f^′ (x) =−(1/x^2 )ln(1+x)+(1/(x(1+x))) +(1/x^2 )ln(1+xe^(−1) )−(1/x)(e^(−1) /(1+xe^(−1) )) ⇒ g(x) =(1/x^2 )ln(1+x)−(1/(x(1+x)))−(1/x^2 )ln(1+xe^(−1) )+(e^(−1) /(x(1+xe^(−1) ))) 4)∫_0 ^1 (dt/((1+e^t )^2 )) =g(1) =ln(2)−(1/2) −ln(1+e^(−1) ) +(e^(−1) /(1+e^(−1) ))](https://www.tinkutara.com/question/Q65318.png)
Commented by mathmax by abdo last updated on 28/Jul/19
![5) we have f(x) =∫_0 ^1 (dt/(x+e^t )) ⇒f^((n)) (x) =∫_0 ^1 (((−1)^n n!)/((x+e^t )^(n+1) ))dt =(−1)^n n! ∫_0 ^1 (dt/((x+e^t )^(n+1) )) 6) f(x) =Σ_(n=0) ^∞ ((f^((n)) (0))/(n!)) x^n but f^((n)) (0) =(−1)^n n! ∫_0 ^1 (dt/e^((n+1)t) ) =(−1)^n n! ∫_0 ^1 e^(−(n+1)t) dt =(−1)^n n! [−(1/(n+1))e^(−(n+1)t) ]_0 ^1 =−(((−1)^n n!)/(n+1)){ e^(−(n+1)) −1} ⇒f(x) =Σ_(n=0) ^∞ (((−1)^(n+1) )/(n+1)){e^(−(n+1)) −1} ⇒f(x) =Σ_(n=0) ^∞ (((−1)^n )/(n+1)){1−e^(−(n+1)) } .](https://www.tinkutara.com/question/Q65322.png)
Commented by mathmax by abdo last updated on 28/Jul/19

Answered by Eminem last updated on 28/Jul/19
