Menu Close

f-x-0-1-dt-x-e-t-with-0-x-1-1-find-aexplicit-form-of-f-x-2-calculate-0-1-dt-2-e-t-3-find-g-x-0-1-dt-x-e-t-2-4-calculate-0-1-dt-1-e-t-2-5-give-




Question Number 65290 by mathmax by abdo last updated on 27/Jul/19
f(x) =∫_0 ^1   (dt/(x+e^t ))   with  0≤x≤1  1) find aexplicit form of f(x)  2) calculate ∫_0 ^1   (dt/(2+e^t ))  3) find g(x) =∫_0 ^1  (dt/((x+e^t )^2 ))  4) calculate ∫_0 ^1   (dt/((1+e^t )^2 ))  5) give f^((n)) (x) at form of integrals  6) developp f at integr serie.
f(x)=01dtx+etwith0x11)findaexplicitformoff(x)2)calculate01dt2+et3)findg(x)=01dt(x+et)24)calculate01dt(1+et)25)givef(n)(x)atformofintegrals6)developpfatintegrserie.
Commented by mathmax by abdo last updated on 28/Jul/19
1) f(x) =∫_0 ^1   (dt/(x+e^t )) =∫_0 ^1   (e^(−t) /(1+xe^(−t) ))dt  =−(1/x)∫_0 ^1  ((−xe^(−t) )/(1+xe^(−t) ))dt  =−(1/x)[ln(1+xe^(−t) )]_(t=0) ^1  =−(1/x){ln(1+xe^(−1) )−ln(1+x)} ⇒  f(x) =((ln(1+x))/x) −((ln(1+xe^(−1) ))/x)   if   x≠0  2)∫_0 ^1   (dt/(2+e^t )) =f(2) =((ln(3))/2) −((ln(1+2e^(−1) ))/2)  3)we have f^′ (x) =−∫_0 ^1   (dt/((x+e^t )^2 )) =−g(x) ⇒g(x)=−f^′ (x)  f^′ (x) =−(1/x^2 )ln(1+x)+(1/(x(1+x))) +(1/x^2 )ln(1+xe^(−1) )−(1/x)(e^(−1) /(1+xe^(−1) )) ⇒  g(x) =(1/x^2 )ln(1+x)−(1/(x(1+x)))−(1/x^2 )ln(1+xe^(−1) )+(e^(−1) /(x(1+xe^(−1) )))  4)∫_0 ^1    (dt/((1+e^t )^2 )) =g(1) =ln(2)−(1/2) −ln(1+e^(−1) ) +(e^(−1) /(1+e^(−1) ))
1)f(x)=01dtx+et=01et1+xetdt=1x01xet1+xetdt=1x[ln(1+xet)]t=01=1x{ln(1+xe1)ln(1+x)}f(x)=ln(1+x)xln(1+xe1)xifx02)01dt2+et=f(2)=ln(3)2ln(1+2e1)23)wehavef(x)=01dt(x+et)2=g(x)g(x)=f(x)f(x)=1x2ln(1+x)+1x(1+x)+1x2ln(1+xe1)1xe11+xe1g(x)=1x2ln(1+x)1x(1+x)1x2ln(1+xe1)+e1x(1+xe1)4)01dt(1+et)2=g(1)=ln(2)12ln(1+e1)+e11+e1
Commented by mathmax by abdo last updated on 28/Jul/19
5) we have f(x) =∫_0 ^1 (dt/(x+e^t )) ⇒f^((n)) (x) =∫_0 ^1  (((−1)^n n!)/((x+e^t )^(n+1) ))dt  =(−1)^n n! ∫_0 ^1    (dt/((x+e^t )^(n+1) ))  6) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n     but f^((n)) (0) =(−1)^n n! ∫_0 ^1   (dt/e^((n+1)t) )  =(−1)^n n! ∫_0 ^1  e^(−(n+1)t)  dt =(−1)^n n! [−(1/(n+1))e^(−(n+1)t) ]_0 ^1   =−(((−1)^n n!)/(n+1)){  e^(−(n+1)) −1} ⇒f(x) =Σ_(n=0) ^∞  (((−1)^(n+1) )/(n+1)){e^(−(n+1)) −1}  ⇒f(x) =Σ_(n=0) ^∞   (((−1)^n )/(n+1)){1−e^(−(n+1)) } .
5)wehavef(x)=01dtx+etf(n)(x)=01(1)nn!(x+et)n+1dt=(1)nn!01dt(x+et)n+16)f(x)=n=0f(n)(0)n!xnbutf(n)(0)=(1)nn!01dte(n+1)t=(1)nn!01e(n+1)tdt=(1)nn![1n+1e(n+1)t]01=(1)nn!n+1{e(n+1)1}f(x)=n=0(1)n+1n+1{e(n+1)1}f(x)=n=0(1)nn+1{1e(n+1)}.
Commented by mathmax by abdo last updated on 28/Jul/19
f(x) =Σ_(n=0) ^∞  (((−1)^n )/(n+1)){1−e^(−(n+1)) } x^n
f(x)=n=0(1)nn+1{1e(n+1)}xn
Answered by Eminem last updated on 28/Jul/19
f(x)=∫_0 ^1 (e^(−t) /(xe^(−t) +1))dt=−(1/x)∫_0 ^1 ((−xe^(−t) )/(1+xe^(−t) ))dt     ∀x∈IR^∗   f(x)=−(1/x){ln(1+xe^(−1) )−ln(1+x) }=(1/x)ln(((1+x)/(1+xe^(−1) )))  2⟩f(2)=(1/2)ln((3/(1+2e^(−1) )))  3)find  g(x}=∫_0 ^1  (dt/((x+e^t )^2 ))  ∀x∈IR^∗  f(x)=(1/x)ln(((1+x)/(1+xe^(−1) )))  f^′ (x)=∫_0 ^1 (d/dx)((1/(x+e^t )))dt=∫_0 ^1 ((−1)/((x+e^t )^2 ))dt=−g(x)==>  g(x)=−f^′ (x)=−(d/dx){(1/x)ln(((1+x)/(1+xe^(−1) )))}  =−{((−1)/x^2 )ln(((1+x)/(1+xe^(−1) )))+(1/x)×(((1+xe^(−1) −e^(−1) (1+x))/(((1+xe^(−1) )^2 )/(((1+x))/((1+xe^(−1) ))))))}  =(1/x^2 )ln(((1+x)/(1+xe^(−1) )))−(1/x)×(((1−e^(−1) ))/((1+x)(1+xe^(−1) )))=g(x)  ∫_0 ^1 (dt/((1+e^t )^2 ))=g(1)=ln((2/(1+e^(−1) )))−(((1−e^(−1) ))/((1+e^(−1) )(2)))  f^n (x)=∫_0 ^1 (((−1)^n n!)/((x+e^t )^(n+1) ))  f(x)=(1/x){ln(1+x)−ln(1+xe^(−1) )}  =(1/x){Σ_(k=0) ((−1)^k (x^(k+1) /(k+1))−(−1)^k (((e^(−1) x)^(k+1) )/(k+1)))  =Σ_(k=0) (−1)^k (1−e^(−(k+1)) )(x^k /(k+1))
f(x)=01etxet+1dt=1x01xet1+xetdtxIRf(x)=1x{ln(1+xe1)ln(1+x)}=1xln(1+x1+xe1)2f(2)=12ln(31+2e1)3)findg(x}=01dt(x+et)2xIRf(x)=1xln(1+x1+xe1)f(x)=01ddx(1x+et)dt=011(x+et)2dt=g(x)==>g(x)=f(x)=ddx{1xln(1+x1+xe1)}={1x2ln(1+x1+xe1)+1x×(1+xe1e1(1+x)(1+xe1)2(1+x)(1+xe1))}=1x2ln(1+x1+xe1)1x×(1e1)(1+x)(1+xe1)=g(x)01dt(1+et)2=g(1)=ln(21+e1)(1e1)(1+e1)(2)fn(x)=01(1)nn!(x+et)n+1f(x)=1x{ln(1+x)ln(1+xe1)}=1x{k=0((1)kxk+1k+1(1)k(e1x)k+1k+1)=k=0(1)k(1e(k+1))xkk+1

Leave a Reply

Your email address will not be published. Required fields are marked *