Menu Close

f-x-0-pi-2-sin-2-t-1-xsin-2-t-dt-




Question Number 87052 by lémùst last updated on 02/Apr/20
f(x)=∫_0 ^(π/2) ((sin^2 (t))/(1+xsin^2 (t)))dt
f(x)=0π/2sin2(t)1+xsin2(t)dt
Commented by mathmax by abdo last updated on 02/Apr/20
f(x)=∫_0 ^(π/2)  ((sin^2 t)/(1+x sin^2 t))dt=(1/x)∫_0 ^(π/2)  ((xsin^2 t +1−1)/(1+xsin^2 t))dt  =(π/(2x))−(1/x) ∫_0 ^(π/(2 ))  (dt/(1+xsin^2 t)) [we have  ∫_0 ^(π/2)  (dt/(1+xsin^2 t)) =∫_0 ^(π/2)  (dt/(1+x×((1−cos(2t))/2)))  =_(2x=u)   ∫_0 ^π      (du/(2(1+x×((1−cos(2u))/2)))) = ∫_0 ^π   (du/(2+x−xcosu))  =_(tan((u/2))=z)   ∫_0 ^∞    ((2dz)/((1+z^2 )(2+x −x((1−z^2 )/(1+z^2 ))))) =∫_0 ^∞   ((2dz)/(2+x +(2+x)z^2 −x+xz^2 ))  =∫_0 ^∞   ((2dz)/(2+(2+2x)z^2 )) =∫_0 ^∞   (dz/(1+(1+x)z^2 ))   case 1   1+x>0  we do changement u=(√(1+x))z ⇒  ∫_0 ^∞   (dz/(1+(1+x)z^2 )) =∫_0 ^∞   (du/( (√(1+x))(1+u^2 ))) =(1/( (√(1+x)))) ×(π/2) ⇒  f(x)=(π/(2x))−(π/(2x(√(1+x))))  (x>−1 and x≠0)  case 2  1+x<0 ⇒∫_0 ^∞   (dz/(1+(1+x)z^2 )) =∫_0 ^∞   (dz/(1−(−(1+x))z^2 ))  =∫_0 ^∞   (dz/((1−(√(−1−x))z)(1+(√(−1−x))z)))  =(1/2)∫_0 ^∞   ((1/(1−(√(−1−x))z))+(1/(1+(√(−1−x))z)))  =(1/2)∫_0 ^∞ ((1/(−αz +1)) +(1/(αz +1)))dz   (α=(√(−1−x)))  =(1/2)[(1/α)ln∣αz +1∣−(1/α)ln∣αz−1∣]_0 ^(+∞)   (1/(2α))[ln∣((αz +1)/(αz−1))∣]_0 ^(+∞)  =0  so  f(x)=(π/(2x))−(π/(2x(√(1+x)))) if x>−1 and x≠−1  f(x)=0 if x<−1
f(x)=0π2sin2t1+xsin2tdt=1x0π2xsin2t+111+xsin2tdt=π2x1x0π2dt1+xsin2t[wehave0π2dt1+xsin2t=0π2dt1+x×1cos(2t)2=2x=u0πdu2(1+x×1cos(2u)2)=0πdu2+xxcosu=tan(u2)=z02dz(1+z2)(2+xx1z21+z2)=02dz2+x+(2+x)z2x+xz2=02dz2+(2+2x)z2=0dz1+(1+x)z2case11+x>0wedochangementu=1+xz0dz1+(1+x)z2=0du1+x(1+u2)=11+x×π2f(x)=π2xπ2x1+x(x>1andx0)case21+x<00dz1+(1+x)z2=0dz1((1+x))z2=0dz(11xz)(1+1xz)=120(111xz+11+1xz)=120(1αz+1+1αz+1)dz(α=1x)=12[1αlnαz+11αlnαz1]0+12α[lnαz+1αz1]0+=0sof(x)=π2xπ2x1+xifx>1andx1f(x)=0ifx<1
Commented by lémùst last updated on 02/Apr/20
merci beaucoup   mais je pense que f(x)=(π/(2x)) si x<−1
mercibeaucoupmaisjepensequef(x)=π2xsix<1
Commented by mathmax by abdo last updated on 02/Apr/20
oui  tu a raison j ai oublie (π/(2x)) merci .
ouituaraisonjaioublieπ2xmerci.
Commented by Ar Brandon last updated on 03/Apr/20
genial!!
genial!!

Leave a Reply

Your email address will not be published. Required fields are marked *