Question Number 87052 by lémùst last updated on 02/Apr/20

Commented by mathmax by abdo last updated on 02/Apr/20
![f(x)=∫_0 ^(π/2) ((sin^2 t)/(1+x sin^2 t))dt=(1/x)∫_0 ^(π/2) ((xsin^2 t +1−1)/(1+xsin^2 t))dt =(π/(2x))−(1/x) ∫_0 ^(π/(2 )) (dt/(1+xsin^2 t)) [we have ∫_0 ^(π/2) (dt/(1+xsin^2 t)) =∫_0 ^(π/2) (dt/(1+x×((1−cos(2t))/2))) =_(2x=u) ∫_0 ^π (du/(2(1+x×((1−cos(2u))/2)))) = ∫_0 ^π (du/(2+x−xcosu)) =_(tan((u/2))=z) ∫_0 ^∞ ((2dz)/((1+z^2 )(2+x −x((1−z^2 )/(1+z^2 ))))) =∫_0 ^∞ ((2dz)/(2+x +(2+x)z^2 −x+xz^2 )) =∫_0 ^∞ ((2dz)/(2+(2+2x)z^2 )) =∫_0 ^∞ (dz/(1+(1+x)z^2 )) case 1 1+x>0 we do changement u=(√(1+x))z ⇒ ∫_0 ^∞ (dz/(1+(1+x)z^2 )) =∫_0 ^∞ (du/( (√(1+x))(1+u^2 ))) =(1/( (√(1+x)))) ×(π/2) ⇒ f(x)=(π/(2x))−(π/(2x(√(1+x)))) (x>−1 and x≠0) case 2 1+x<0 ⇒∫_0 ^∞ (dz/(1+(1+x)z^2 )) =∫_0 ^∞ (dz/(1−(−(1+x))z^2 )) =∫_0 ^∞ (dz/((1−(√(−1−x))z)(1+(√(−1−x))z))) =(1/2)∫_0 ^∞ ((1/(1−(√(−1−x))z))+(1/(1+(√(−1−x))z))) =(1/2)∫_0 ^∞ ((1/(−αz +1)) +(1/(αz +1)))dz (α=(√(−1−x))) =(1/2)[(1/α)ln∣αz +1∣−(1/α)ln∣αz−1∣]_0 ^(+∞) (1/(2α))[ln∣((αz +1)/(αz−1))∣]_0 ^(+∞) =0 so f(x)=(π/(2x))−(π/(2x(√(1+x)))) if x>−1 and x≠−1 f(x)=0 if x<−1](https://www.tinkutara.com/question/Q87058.png)
Commented by lémùst last updated on 02/Apr/20

Commented by mathmax by abdo last updated on 02/Apr/20

Commented by Ar Brandon last updated on 03/Apr/20
