Menu Close

f-x-0-x-e-t-t-2-2-dt-show-that-0-1-f-t-dt-e-1-




Question Number 147275 by ArielVyny last updated on 19/Jul/21
f(x)=∫_0 ^x e^(t−(t^2 /2)) dt   show that ∫_0 ^1 f(t)dt=(√e)−1
f(x)=0xett22dtshowthat01f(t)dt=e1
Answered by mindispower last updated on 19/Jul/21
∫_0 ^1 f(t)dt=[tf(t)]_0 ^1 −∫_0 ^1 tf′(t)dt  =f(1)−∫_0 ^1 te^(t−(t^2 /2)) dt  =∫_0 ^1 (1−t)e^(t−(t^2 /2)) dt=[e^(t−(t^2 /2)) ]_0 ^1 =(√e)−1
01f(t)dt=[tf(t)]0101tf(t)dt=f(1)01tett22dt=01(1t)ett22dt=[ett22]01=e1
Commented by ArielVyny last updated on 20/Jul/21
thank sir
thanksir

Leave a Reply

Your email address will not be published. Required fields are marked *