Menu Close

f-x-1-1-2-2x-2x-x-4-prove-that-f-x-3-8-




Question Number 79588 by loveineq. last updated on 26/Jan/20
f(x) = (1/(1+2(√(2x))+2x))+(x/4)  prove that f(x) ≥ (3/8) .
f(x)=11+22x+2x+x4provethatf(x)38.
Commented by MJS last updated on 26/Jan/20
2(√(2x)) or 2(√2)x ?
22xor22x?
Commented by loveineq. last updated on 26/Jan/20
is 2(√(2x)) not 2(√2)x
is22xnot22x
Commented by john santu last updated on 26/Jan/20
let (√(2x)) = t ⇒2x = t^2    f(x) = (1/(1+2t+t^2 )) + (t^2 /8)  f(x) = (1/((t+1)^2 )) +(t^2 /8) = (t+1)^(−2) +(t^2 /8)  f ′(x) = {−2(t+1)^(−3) +(t/4)}×(1/t)=0  ((−2)/((t+1)^3 ))+(t/4)=0 ⇒t(t+1)^3 =8  t = 1 ⇒x = (1/2) ⇒f_(min)  =  (1/(1+2(√(2.(1/2)))+2.(1/2)))+(1/8)  = (1/(1+2+1))+(1/8)=(3/8)
let2x=t2x=t2f(x)=11+2t+t2+t28f(x)=1(t+1)2+t28=(t+1)2+t28f(x)={2(t+1)3+t4}×1t=02(t+1)3+t4=0t(t+1)3=8t=1x=12fmin=11+22.12+2.12+18=11+2+1+18=38
Answered by MJS last updated on 26/Jan/20
(1/(2x+2(√2)x^(1/2) +1))+(x/4)<(3/8)  ⇒  x^2 +(√2)x^(3/2) −x−((3(√2))/2)x^(1/2) +(5/4)<0  ((√x))^4 +(√2)((√x))^3 −((√x))^2 −((3(√2))/2)(√x)+(5/4)<0  ((√x)−((√2)/2))^2 (((√x))^2 +2(√2)(√x)+(5/2))<0  wrong ⇒ (1/(2x+2(√2)x^(1/2) +1))+(x/4)≥(3/8)
12x+22x12+1+x4<38x2+2x32x322x12+54<0(x)4+2(x)3(x)2322x+54<0(x22)2((x)2+22x+52)<0wrong12x+22x12+1+x438

Leave a Reply

Your email address will not be published. Required fields are marked *