Menu Close

f-x-1-1-sin-x-1-cos-x-find-Min-f-x-




Question Number 149667 by mnjuly1970 last updated on 06/Aug/21
   f (x )= (1/( (√( 1 + sin (x ))) +(√( 1 + cos (x)))))              find:                            Min( f (x)) =?
f(x)=11+sin(x)+1+cos(x)find:Min(f(x))=?
Answered by iloveisrael last updated on 07/Aug/21
f(x)=(1/(∣cos (1/2)x+sin (1/2)x∣+(√2) ∣cos (1/2)x∣))  f(x)=(1/( (√2) ∣sin ((1/2)x+(π/4))∣+(√2) ∣cos (1/2)x∣))  when cos (1/2)x =1  or (1/2)x= 0  f_1 = (1/( (√2) sin ((π/4))+(√2))) = (1/( (√2) +1))=(√2)−1  when sin ((1/2)x+(π/4))=1  or (1/2)x=(π/4)  f_2 = (1/( (√2) +(√2)((1/( (√2))))))=(1/( (√2)+1))=(√2)−1  f(x)= (√2) −1  when (1/2)x=(π/8) we get  f_3 =(1/( (√2) {∣sin ((3π)/8)∣+∣cos (π/8)∣}))  sin ((3π)/8)=(√((1−cos ((3π)/4))/2))=(√((1+((√2)/2))/2))=(√((2+(√2))/4))=((√(2+(√2)))/2)  cos (π/8)=(√((1+cos (π/4))/2))=(√((2+(√2))/4))=((√(2+(√2)))/2)  f(x)_(min) =f_3 =(1/( (√2) {((√(2+(√2)))/2)+((√(2+(√2)))/2)}))   = (1/( (√2) ((√(2+(√2))))))
f(x)=1cos12x+sin12x+2cos12xf(x)=12sin(12x+π4)+2cos12xwhencos12x=1or12x=0f1=12sin(π4)+2=12+1=21whensin(12x+π4)=1or12x=π4f2=12+2(12)=12+1=21f(x)=21when12x=π8wegetf3=12{sin3π8+cosπ8}sin3π8=1cos3π42=1+222=2+24=2+22cosπ8=1+cosπ42=2+24=2+22f(x)min=f3=12{2+22+2+22}=12(2+2)
Commented by mnjuly1970 last updated on 06/Aug/21
thx master...
thxmaster
Commented by mnjuly1970 last updated on 06/Aug/21
   min?  (1/( (√2) ((√(2+(√2) )) )))
min?12(2+2)
Answered by EDWIN88 last updated on 07/Aug/21
f(x)=(1/( (√(1+sin x))+(√(1+cos x))))   let g(x)=(√(1+sin x)) +(√(1+cos x))  then f(x)=(1/(g(x))) , f(x)_(min)  it  must be g(x)_(max)   ⇒take g′(x)=((cos x)/(2(√(1+sin x))))−((sin x)/(2(√(1+cos x)))) =0  ⇒cos x(√(1+cos x)) = sin x(√(1+sin x))  ⇒cos^2 x+cos^3 x=sin^2 x+sin^3 x  ⇒cos^2 x−sin^2 x=sin^3 x−cos^3 x  ⇒(cos x−sin x)(cos x+sin x)=−(cos x−sin x)(1+sin xcos x)  ⇒(cos x−sin x){cos x+sin x+1+sin xcos x)=0  when cos x=sin x ⇒x=(π/4)  g(x)_(max) = (√(1+sin (π/4)))+(√(1+cos (π/4)))  g(x)_(max) =(√((2+(√2))/2))+(√((2+(√2))/2))  g(x)_(max) =2(√((2+(√2))/2)) = (√2) ((√(2+(√2))))  therefore f(x)_(min) =(1/( (√2)((√(2+(√2))))))
f(x)=11+sinx+1+cosxletg(x)=1+sinx+1+cosxthenf(x)=1g(x),f(x)minitmustbeg(x)maxtakeg(x)=cosx21+sinxsinx21+cosx=0cosx1+cosx=sinx1+sinxcos2x+cos3x=sin2x+sin3xcos2xsin2x=sin3xcos3x(cosxsinx)(cosx+sinx)=(cosxsinx)(1+sinxcosx)(cosxsinx){cosx+sinx+1+sinxcosx)=0whencosx=sinxx=π4g(x)max=1+sinπ4+1+cosπ4g(x)max=2+22+2+22g(x)max=22+22=2(2+2)thereforef(x)min=12(2+2)

Leave a Reply

Your email address will not be published. Required fields are marked *