Menu Close

f-x-1-1-x-x-f-x-




Question Number 105613 by Study last updated on 30/Jul/20
f(x)=(1+(1/x))^(x!)             f^′ (x)=????
f(x)=(1+1x)x!f(x)=????
Answered by mathmax by abdo last updated on 30/Jul/20
f(x) =e^(x!ln(1+(1/x)))  ⇒f^′ (x) =(x!ln(1+(1/x)))^′  f(x) le   =(x!)^′ ln(1+(1/x))+x!(ln(1+(1/x)))^′ f(x)  but  x!=Γ(x+1) =∫_0 ^∞  t^x  e^(−t) dt  =∫_0 ^∞  e^(xlnt)  e^(−t)  dt ⇒  (d/dx)(x!) = ∫_0 ^∞  lnt t^x  e^(−t)  dt   and (d/dx)(ln(1+(1/x)))=((−1)/(x^2 (1+(1/x))))  =((−1)/(x^2  +x)) ⇒f^′ (x) ={ln(1+(1/x))∫_0 ^∞ t^x  e^(−t) lnt dt −((x!)/(x^2  +x))}(1+(1/x))^(x!)
f(x)=ex!ln(1+1x)f(x)=(x!ln(1+1x))f(x)le=(x!)ln(1+1x)+x!(ln(1+1x))f(x)butx!=Γ(x+1)=0txetdt=0exlntetdtddx(x!)=0lnttxetdtandddx(ln(1+1x))=1x2(1+1x)=1x2+xf(x)={ln(1+1x)0txetlntdtx!x2+x}(1+1x)x!

Leave a Reply

Your email address will not be published. Required fields are marked *