Menu Close

f-x-1-lnx-1-x-1-1-lim-x-1-f-x-1-2-2-0-1-f-x-dx-




Question Number 95397 by ~blr237~ last updated on 25/May/20
f(x)=(1/(lnx)) −(1/(x−1))   1)    lim_(x→1)  f(x)=(1/2)    2)     ∫_0 ^1  f(x)dx= γ
$${f}\left({x}\right)=\frac{\mathrm{1}}{{lnx}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}\: \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}=\:\gamma\: \\ $$
Commented by Mikael_786 last updated on 25/May/20
1. lim_(x→1) {(1/(lnx))−(1/(x−1))}  lim_(x→1) {(1/(x−1))(((x−1)/(lnx))−1)}=lim_(x→1)  {(1/(x−1))(∫_0 ^1 x^y dy−1)}  lim_(x→1) {∫_0 ^1 (x^y /(x−1))dy−∫_0 ^1 (1/(x−1))dy}  lim_(x→1) {∫_0 ^1  ((x^y −1)/(x−1))dy}=∫_0 ^1  {lim_(x→1)  ((x^y −1)/(x−1))}dy  =∫_0 ^1 ydy=[(y^2 /2)]_0 ^1 =(1/2)
$$\mathrm{1}.\:\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left\{\frac{\mathrm{1}}{{lnx}}−\frac{\mathrm{1}}{{x}−\mathrm{1}}\right\} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left\{\frac{\mathrm{1}}{{x}−\mathrm{1}}\left(\frac{{x}−\mathrm{1}}{{lnx}}−\mathrm{1}\right)\right\}=\underset{{x}\rightarrow\mathrm{1}} {{lim}}\:\left\{\frac{\mathrm{1}}{{x}−\mathrm{1}}\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{{y}} {dy}−\mathrm{1}\right)\right\} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left\{\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}^{{y}} }{{x}−\mathrm{1}}{dy}−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{{x}−\mathrm{1}}{dy}\right\} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left\{\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{y}} −\mathrm{1}}{{x}−\mathrm{1}}{dy}\right\}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left\{\underset{{x}\rightarrow\mathrm{1}} {{lim}}\:\frac{{x}^{{y}} −\mathrm{1}}{{x}−\mathrm{1}}\right\}{dy} \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ydy}=\left[\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Mikael_786 last updated on 25/May/20
∫_0 ^1 {(1/(lnx))−(1/(x−1))}dx  let lnx=−y ⇒ x=e^(−y)   dx=−e^(−y) dy  ∫_∞ ^0  {(1/(−y))−(1/(e^(−y) −1))}(−e^(−y) dy)  ∫_0 ^∞  {(e^(−y) /(1−e^(−y) ))−(e^(−y) /y)}dy=∫_0 ^∞  (e^(−y) /(1−e^(−y) ))dy−∫_0 ^∞ (e^(−y) /y)dy  ∫_0 ^∞  (e^(−y) /(1−e^(−y) ))dy−∫_0 ^1 (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  let   z=1−e^(−y)  ⇒ e^(−y) =1−z  −y=ln(1−z)⇒ dy=(dz/(1−z))  ∫_0 ^1  ((1−z)/z)∗(dz/(1−z))−∫_0 ^1  (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  ∫_0 ^1  (dz/z)−∫_0 ^1 (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  ∫_0 ^1  ((1−e^(−y) )/y)dy−∫_1 ^∞ (e^(−y) /y)dy = γ  γ : Euler Constant
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left\{\frac{\mathrm{1}}{{lnx}}−\frac{\mathrm{1}}{{x}−\mathrm{1}}\right\}{dx} \\ $$$${let}\:{lnx}=−{y}\:\Rightarrow\:{x}={e}^{−{y}} \\ $$$${dx}=−{e}^{−{y}} {dy} \\ $$$$\underset{\infty} {\overset{\mathrm{0}} {\int}}\:\left\{\frac{\mathrm{1}}{−{y}}−\frac{\mathrm{1}}{{e}^{−{y}} −\mathrm{1}}\right\}\left(−{e}^{−{y}} {dy}\right) \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\left\{\frac{{e}^{−{y}} }{\mathrm{1}−{e}^{−{y}} }−\frac{{e}^{−{y}} }{{y}}\right\}{dy}=\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{e}^{−{y}} }{\mathrm{1}−{e}^{−{y}} }{dy}−\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{e}^{−{y}} }{{y}}{dy} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{e}^{−{y}} }{\mathrm{1}−{e}^{−{y}} }{dy}−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{e}^{−{y}} }{{y}}{dy}−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{−{y}} }{{y}}{dy} \\ $$$${let}\:\:\:{z}=\mathrm{1}−{e}^{−{y}} \:\Rightarrow\:{e}^{−{y}} =\mathrm{1}−{z} \\ $$$$−{y}={ln}\left(\mathrm{1}−{z}\right)\Rightarrow\:{dy}=\frac{{dz}}{\mathrm{1}−{z}} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}−{z}}{{z}}\ast\frac{{dz}}{\mathrm{1}−{z}}−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{e}^{−{y}} }{{y}}{dy}−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{−{y}} }{{y}}{dy} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dz}}{{z}}−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{e}^{−{y}} }{{y}}{dy}−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{−{y}} }{{y}}{dy} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}−{e}^{−{y}} }{{y}}{dy}−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{−{y}} }{{y}}{dy}\:=\:\gamma \\ $$$$\gamma\::\:{Euler}\:{Constant} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *