Menu Close

f-x-1-lnx-1-x-1-1-lim-x-1-f-x-1-2-2-0-1-f-x-dx-




Question Number 95397 by ~blr237~ last updated on 25/May/20
f(x)=(1/(lnx)) −(1/(x−1))   1)    lim_(x→1)  f(x)=(1/2)    2)     ∫_0 ^1  f(x)dx= γ
f(x)=1lnx1x11)limx1f(x)=122)01f(x)dx=γ
Commented by Mikael_786 last updated on 25/May/20
1. lim_(x→1) {(1/(lnx))−(1/(x−1))}  lim_(x→1) {(1/(x−1))(((x−1)/(lnx))−1)}=lim_(x→1)  {(1/(x−1))(∫_0 ^1 x^y dy−1)}  lim_(x→1) {∫_0 ^1 (x^y /(x−1))dy−∫_0 ^1 (1/(x−1))dy}  lim_(x→1) {∫_0 ^1  ((x^y −1)/(x−1))dy}=∫_0 ^1  {lim_(x→1)  ((x^y −1)/(x−1))}dy  =∫_0 ^1 ydy=[(y^2 /2)]_0 ^1 =(1/2)
1.limx1{1lnx1x1}limx1{1x1(x1lnx1)}=limx1{1x1(10xydy1)}limx1{10xyx1dy101x1dy}limx1{10xy1x1dy}=10{limx1xy1x1}dy=10ydy=[y22]01=12
Commented by Mikael_786 last updated on 25/May/20
∫_0 ^1 {(1/(lnx))−(1/(x−1))}dx  let lnx=−y ⇒ x=e^(−y)   dx=−e^(−y) dy  ∫_∞ ^0  {(1/(−y))−(1/(e^(−y) −1))}(−e^(−y) dy)  ∫_0 ^∞  {(e^(−y) /(1−e^(−y) ))−(e^(−y) /y)}dy=∫_0 ^∞  (e^(−y) /(1−e^(−y) ))dy−∫_0 ^∞ (e^(−y) /y)dy  ∫_0 ^∞  (e^(−y) /(1−e^(−y) ))dy−∫_0 ^1 (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  let   z=1−e^(−y)  ⇒ e^(−y) =1−z  −y=ln(1−z)⇒ dy=(dz/(1−z))  ∫_0 ^1  ((1−z)/z)∗(dz/(1−z))−∫_0 ^1  (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  ∫_0 ^1  (dz/z)−∫_0 ^1 (e^(−y) /y)dy−∫_1 ^∞ (e^(−y) /y)dy  ∫_0 ^1  ((1−e^(−y) )/y)dy−∫_1 ^∞ (e^(−y) /y)dy = γ  γ : Euler Constant
10{1lnx1x1}dxletlnx=yx=eydx=eydy0{1y1ey1}(eydy)0{ey1eyeyy}dy=0ey1eydy0eyydy0ey1eydy10eyydy1eyydyletz=1eyey=1zy=ln(1z)dy=dz1z101zzdz1z10eyydy1eyydy10dzz10eyydy1eyydy101eyydy1eyydy=γγ:EulerConstant

Leave a Reply

Your email address will not be published. Required fields are marked *