Menu Close

f-x-1-x-2-x-2018-f-0-




Question Number 147402 by vvvv last updated on 20/Jul/21
f(x+1)(x+2)....(x+2018)  f′(0)=?
\boldsymbolf(\boldsymbolx+1)(\boldsymbolx+2).(\boldsymbolx+2018)\boldsymbolf(0)=?
Answered by SEKRET last updated on 21/Jul/21
  y=(x+1)(x+2)∙....(x+2018)    ln(y) = ln(x+1)+ln(x+2)+..+ln(x+2018)    ((y′)/y) = (1/(x+1))+(1/(x+2))+...+(1/(x+2018))   y ′ = (x+1)(x+2)∙..(x+2018)∙((1/(x+1))+(1/(x+2))+...+(1/(x+2018)))   y ′ (0)= 2018!∙((1/1) +(1/2)+(1/3)+..+(1/(2018)))    ABDULAZIZ   ABDUVALIYEV
\boldsymboly=(\boldsymbolx+1)(\boldsymbolx+2).(\boldsymbolx+2018)\boldsymbolln(\boldsymboly)=\boldsymbolln(\boldsymbolx+1)+\boldsymbolln(\boldsymbolx+2)+..+\boldsymbolln(\boldsymbolx+2018)\boldsymboly\boldsymboly=1\boldsymbolx+1+1\boldsymbolx+2++1\boldsymbolx+2018\boldsymboly=(\boldsymbolx+1)(\boldsymbolx+2)..(\boldsymbolx+2018)(1\boldsymbolx+1+1\boldsymbolx+2++1\boldsymbolx+2018)\boldsymboly(0)=2018!(11+12+13+..+12018)\boldsymbolABDULAZIZ\boldsymbolABDUVALIYEV
Answered by Olaf_Thorendsen last updated on 20/Jul/21
I suppose you mean  f(x) = (x+1)(x+2)...(x+2018)  f(x) = Π_(k=1) ^(2018) (x+k)  lnf(x) = Σ_(k=1) ^(2018) ln(x+k)  ((f′(x))/(f(x))) = Σ_(k=1) ^(2018) (1/(x+k))  ((f′(0))/(f(0))) = Σ_(k=1) ^(2018) (1/k)  ((f′(0))/(2018!)) = H_(2018)   f′(0) = 2018!×H_(2018)
Isupposeyoumeanf(x)=(x+1)(x+2)(x+2018)f(x)=2018k=1(x+k)lnf(x)=2018k=1ln(x+k)f(x)f(x)=2018k=11x+kf(0)f(0)=2018k=11kf(0)2018!=H2018f(0)=2018!×H2018

Leave a Reply

Your email address will not be published. Required fields are marked *