Question Number 181447 by Socracious last updated on 25/Nov/22
$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{5}} } \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\mathrm{3}\right)=? \\ $$
Answered by Frix last updated on 25/Nov/22
$${y}={x}+\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${x}=\frac{{y}\pm\sqrt{{y}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\wedge{x}^{−\mathrm{1}} =\frac{{y}\mp\sqrt{{y}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({y}\right)={y}^{\mathrm{5}} −\mathrm{5}{y}^{\mathrm{3}} +\mathrm{5} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{123} \\ $$
Answered by manxsol last updated on 25/Nov/22
Answered by Rasheed.Sindhi last updated on 25/Nov/22
$${x}+\frac{\mathrm{1}}{{x}}={y} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }={y}^{\mathrm{2}} −\mathrm{2} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }={y}^{\mathrm{3}} −\mathrm{3}{y} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)=\left({y}^{\mathrm{2}} −\mathrm{2}\right)\left({y}^{\mathrm{3}} −\mathrm{3}{y}\right) \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }+\frac{\mathrm{1}}{{x}}+{x}=\left({y}^{\mathrm{2}} −\mathrm{2}\right)\left({y}^{\mathrm{3}} −\mathrm{3}{y}\right) \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=\left({y}^{\mathrm{2}} −\mathrm{2}\right)\left({y}^{\mathrm{3}} −\mathrm{3}{y}\right)−{y} \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{2}\right)\left({x}^{\mathrm{3}} −\mathrm{3}{x}\right)−{x} \\ $$$${f}\left(\mathrm{3}\right)=\left(\mathrm{9}−\mathrm{2}\right)\left(\mathrm{27}−\mathrm{9}\right)−\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{7}\left(\mathrm{18}\right)−\mathrm{3}=\mathrm{123} \\ $$
Answered by Rasheed.Sindhi last updated on 25/Nov/22
$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }\:;\:\:\boldsymbol{\mathrm{f}}\left(\mathrm{3}\right)=? \\ $$$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:;\:{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=? \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} =\mathrm{9} \\ $$$$\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{9}−\mathrm{2}=\mathrm{7} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}} =\mathrm{3}^{\mathrm{3}} =\mathrm{27} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{27}−\mathrm{3}\left(\mathrm{3}\right)=\mathrm{18} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)=\left(\mathrm{7}\right)\left(\mathrm{18}\right) \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }+{x}+\frac{\mathrm{1}}{{x}}=\mathrm{126} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }+\mathrm{3}=\mathrm{126} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=\mathrm{126}−\mathrm{3}=\mathrm{123} \\ $$$${f}\left({x}+\frac{\mathrm{1}}{{x}}\right)={x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} } \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{123} \\ $$
Commented by manxsol last updated on 25/Nov/22
$${first}\::{grand}\:{idea}\:\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\left({x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)+\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$${second}:{desarrollo} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Nov/22
$${What}\:{is}\:{meant}\:{by}\:'{desarrollo}'\:{sir}? \\ $$