Menu Close

f-x-1-x-x-5-1-x-5-f-3-




Question Number 181447 by Socracious last updated on 25/Nov/22
       f(x+(1/x))=x^5 +(1/x^5 )       f(3)=?
f(x+1x)=x5+1x5f(3)=?
Answered by Frix last updated on 25/Nov/22
y=x+(1/x) ⇒  x=((y±(√(y^2 −4)))/2)∧x^(−1) =((y∓(√(y^2 −4)))/2) ⇒  f(y)=y^5 −5y^3 +5  f(3)=123
y=x+1xx=y±y242x1=yy242f(y)=y55y3+5f(3)=123
Answered by manxsol last updated on 25/Nov/22
Answered by Rasheed.Sindhi last updated on 25/Nov/22
x+(1/x)=y  x^2 +(1/x^2 )=y^2 −2  x^3 +(1/x^3 )=y^3 −3y  (x^2 +(1/x^2 ))(x^3 +(1/x^3 ))=(y^2 −2)(y^3 −3y)  x^5 +(1/x^5 )+(1/x)+x=(y^2 −2)(y^3 −3y)  x^5 +(1/x^5 )=(y^2 −2)(y^3 −3y)−y  f(x)=(x^2 −2)(x^3 −3x)−x  f(3)=(9−2)(27−9)−3          =7(18)−3=123
x+1x=yx2+1x2=y22x3+1x3=y33y(x2+1x2)(x3+1x3)=(y22)(y33y)x5+1x5+1x+x=(y22)(y33y)x5+1x5=(y22)(y33y)yf(x)=(x22)(x33x)xf(3)=(92)(279)3=7(18)3=123
Answered by Rasheed.Sindhi last updated on 25/Nov/22
       f(x+(1/x))=x^5 +(1/x^5 ) ;  f(3)=?  x+(1/x)=3 ; x^5 +(1/x^5 )=?  (x+(1/x))^2 =3^2 =9   x^2 +(1/x^2 )=9−2=7  (x+(1/x))^3 =3^3 =27  x^3 +(1/x^3 )=27−3(3)=18  (x^2 +(1/x^2 ))(x^3 +(1/x^3 ))=(7)(18)  x^5 +(1/x^5 )+x+(1/x)=126  x^5 +(1/x^5 )+3=126  x^5 +(1/x^5 )=126−3=123  f(x+(1/x))=x^5 +(1/x^5 )  f(3)=123
f(x+1x)=x5+1x5;f(3)=?x+1x=3;x5+1x5=?(x+1x)2=32=9x2+1x2=92=7(x+1x)3=33=27x3+1x3=273(3)=18(x2+1x2)(x3+1x3)=(7)(18)x5+1x5+x+1x=126x5+1x5+3=126x5+1x5=1263=123f(x+1x)=x5+1x5f(3)=123
Commented by manxsol last updated on 25/Nov/22
first :grand idea (x^3 +(1/x^3 ))(x^2 +(1/x^2 ))=(x^5 +(1/x^5 ))+(x+(1/x))  second:desarrollo
first:grandidea(x3+1x3)(x2+1x2)=(x5+1x5)+(x+1x)second:desarrollo
Commented by Rasheed.Sindhi last updated on 26/Nov/22
What is meant by ′desarrollo′ sir?
Whatismeantbydesarrollosir?

Leave a Reply

Your email address will not be published. Required fields are marked *