Menu Close

f-x-2-1-sinx-2-developp-f-at-fourier-serie-




Question Number 144464 by mathmax by abdo last updated on 25/Jun/21
f(x)=(2/((1+sinx)^2 ))  developp f at fourier serie
f(x)=2(1+sinx)2developpfatfourierserie
Answered by mathmax by abdo last updated on 26/Jun/21
let f(a)=(2/(a+sinx)) โ‡’f^โ€ฒ (a)=โˆ’(2/((a+sinx)^2 )) โ‡’โˆ’f^โ€ฒ (1)=(2/((1+sinx)^2 ))  we have f(a)=(2/(a+((e^(ix) โˆ’e^(โˆ’ix) )/(2i))))=((4i)/(2ia+e^(ix) โˆ’e^(โˆ’ix) ))  =_(e^(ix)  =z)    ((4i)/(2ia+zโˆ’z^(โˆ’1) ))=((4iz)/(2iaz+z^2 โˆ’1))=((4iz)/(z^2  +2iaz โˆ’1))  ฮ”^โ€ฒ =โˆ’a^2 +1 =1โˆ’a^2  โ‡’z_1 =โˆ’ia+(โˆš(1โˆ’a^2 ))  z_2 =โˆ’iaโˆ’(โˆš(1โˆ’a^2 ))  โ‡’f(a)=((4iz)/((zโˆ’z_1 )(zโˆ’z_2 )))  =4iz((1/(zโˆ’z_1 ))โˆ’(1/(zโˆ’z_2 ))).(1/(z_1 โˆ’z_2 ))=((4i)/(2(โˆš(1โˆ’a^2 ))))((z/(zโˆ’z_1 ))โˆ’(z/(zโˆ’z_2 )))  โˆฃ(z/z_1 )โˆฃ=1  and โˆฃ(z/z_2 )โˆฃ=1 โ‡’f(a)=((2i)/( (โˆš(1โˆ’a^2 ))))((z/(z_1 ((z/z_1 )โˆ’1)))โˆ’(z/(z_2 ((z/z_2 )โˆ’1))))  =((2iz)/( (โˆš(1โˆ’a^2 ))))((1/(1โˆ’(z/z_2 )))โˆ’(1/(1โˆ’(z/z_1 ))))=((2iz)/( (โˆš(1โˆ’a^2 ))))(ฮฃ_(n=0) ^โˆž  (z^n /z_2 ^n )โˆ’ฮฃ_(n=0) ^โˆž  (z^n /z_1 ^n ))  z_1 =e^(iarctan(โˆ’(a/( (โˆš(1โˆ’a^2 ))))))  and z_2 =e^(iarctan((a/( (โˆš(1โˆ’a^2 ))))))  โ‡’  โ‡’(1/z_1 ^n )=e^(inarctan((a/( (โˆš(1โˆ’a^2 )))))) +e^(โˆ’inarctan((a/( (โˆš(1โˆ’a^2 )))))) =2Re(....)  =2cos(narctan((a/( (โˆš(1โˆ’a^2 )))))) โ‡’  f(a)=((2iz)/( (โˆš(1โˆ’a^2 ))))ฮฃ_(n=0) ^โˆž  2cos(narctan((a/( (โˆš(1โˆ’a^2 ))))))e^(inx)   =((4i)/( (โˆš(1โˆ’a^2 ))))ฮฃ_(n=0) ^โˆž  cos(narctan((a/( (โˆš(1โˆ’a^2 ))))))(cos(n+1)x+isin(n+1)x)  =4i(....)โˆ’(4/( (โˆš(1โˆ’a^2 ))))ฮฃ_(n=0) ^โˆž  cos(narctan((a/( (โˆš(1โˆ’a^2 ))))))sin(n+1)x  f(a) is reaal โ‡’  f(a)=((โˆ’4)/( (โˆš(1โˆ’a^2 ))))ฮฃ_(n=0) ^โˆž  cos(narctan((a/( (โˆš(1โˆ’a^2 ))))))sin(n+1)x  rest to calculate f^โ€ฒ (a)....be continued
letf(a)=2a+sinxโ‡’fโ€ฒ(a)=โˆ’2(a+sinx)2โ‡’โˆ’fโ€ฒ(1)=2(1+sinx)2wehavef(a)=2a+eixโˆ’eโˆ’ix2i=4i2ia+eixโˆ’eโˆ’ix=eix=z4i2ia+zโˆ’zโˆ’1=4iz2iaz+z2โˆ’1=4izz2+2iazโˆ’1ฮ”โ€ฒ=โˆ’a2+1=1โˆ’a2โ‡’z1=โˆ’ia+1โˆ’a2z2=โˆ’iaโˆ’1โˆ’a2โ‡’f(a)=4iz(zโˆ’z1)(zโˆ’z2)=4iz(1zโˆ’z1โˆ’1zโˆ’z2).1z1โˆ’z2=4i21โˆ’a2(zzโˆ’z1โˆ’zzโˆ’z2)โˆฃzz1โˆฃ=1andโˆฃzz2โˆฃ=1โ‡’f(a)=2i1โˆ’a2(zz1(zz1โˆ’1)โˆ’zz2(zz2โˆ’1))=2iz1โˆ’a2(11โˆ’zz2โˆ’11โˆ’zz1)=2iz1โˆ’a2(โˆ‘n=0โˆžznz2nโˆ’โˆ‘n=0โˆžznz1n)z1=eiarctan(โˆ’a1โˆ’a2)andz2=eiarctan(a1โˆ’a2)โ‡’โ‡’1z1n=einarctan(a1โˆ’a2)+eโˆ’inarctan(a1โˆ’a2)=2Re(โ€ฆ.)=2cos(narctan(a1โˆ’a2))โ‡’f(a)=2iz1โˆ’a2โˆ‘n=0โˆž2cos(narctan(a1โˆ’a2))einx=4i1โˆ’a2โˆ‘n=0โˆžcos(narctan(a1โˆ’a2))(cos(n+1)x+isin(n+1)x)=4i(โ€ฆ.)โˆ’41โˆ’a2โˆ‘n=0โˆžcos(narctan(a1โˆ’a2))sin(n+1)xf(a)isreaalโ‡’f(a)=โˆ’41โˆ’a2โˆ‘n=0โˆžcos(narctan(a1โˆ’a2))sin(n+1)xresttocalculatefโ€ฒ(a)โ€ฆ.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *