Menu Close

f-x-2-f-x-2-f-x-f-1-1-f-2-2-f-3-3-f-4-4-then-f-100-




Question Number 120049 by bramlexs22 last updated on 29/Oct/20
 f(x+2)+f(x−2)=f(x)  f(1)=1 ,f(2)=2,f(3)=3,f(4)=4  then f(100)=?
f(x+2)+f(x2)=f(x)f(1)=1,f(2)=2,f(3)=3,f(4)=4thenf(100)=?
Answered by bemath last updated on 29/Oct/20
⇒f(x−2)−f(x)+f(x+2)=0  replace x by x+2 ⇒f(x)−f(x+2)+f(x+4)=0 (i)  replace again x by x+2⇒f(x+2)−f(x+4)+f(x+6)=0 (ii)  adding(i) and (ii)  ⇒f(x)+f(x+6) = 0 (iii)  replace x by x+6 ⇒f(x+6)+f(x+12)=0 (iv)  substract (iii) by (iv) ⇒ f(x+12)=f(x)  it does meant f(x) is periodic function  with period 12.  ⇒f(100)=f(8.12+4)=f(4)=4
f(x2)f(x)+f(x+2)=0replacexbyx+2f(x)f(x+2)+f(x+4)=0(i)replaceagainxbyx+2f(x+2)f(x+4)+f(x+6)=0(ii)adding(i)and(ii)f(x)+f(x+6)=0(iii)replacexbyx+6f(x+6)+f(x+12)=0(iv)substract(iii)by(iv)f(x+12)=f(x)itdoesmeantf(x)isperiodicfunctionwithperiod12.f(100)=f(8.12+4)=f(4)=4
Answered by Ar Brandon last updated on 29/Oct/20
f(x+2)+f(x−2)=f(x)...eqn(1)  Replacing x with x−2 we have  f(x)+f(x−4)=f(x−2)...eqn(2)  eqn(1)+eqn(2)  ⇒f(x+2)=−f(x−4)  ⇒f(x)=−f(x−6){replacing x=x−2}  ⇒f(x+6)=−f(x)=f(x−6)  ⇒f(x)=f(x−12)  Period is 12⇒f(100)=f[4+12(8)]  ⇒f(100)=f(4)=4
f(x+2)+f(x2)=f(x)eqn(1)Replacingxwithx2wehavef(x)+f(x4)=f(x2)eqn(2)eqn(1)+eqn(2)f(x+2)=f(x4)f(x)=f(x6){replacingx=x2}f(x+6)=f(x)=f(x6)f(x)=f(x12)Periodis12f(100)=f[4+12(8)]f(100)=f(4)=4

Leave a Reply

Your email address will not be published. Required fields are marked *