Menu Close

f-x-2sinx-2-cos-2-x-2-f-x-




Question Number 149291 by mathdanisur last updated on 04/Aug/21
f(x) = 2sinx^2 −cos^2 x−2  f^′ (x) = ?
$${f}\left({x}\right)\:=\:\mathrm{2}{sinx}^{\mathrm{2}} −{cos}^{\mathrm{2}} {x}−\mathrm{2} \\ $$$${f}\:^{'} \left({x}\right)\:=\:? \\ $$
Answered by nimnim last updated on 04/Aug/21
f ′(x)=4x.cosx^2 +2cosx.sinx−0=4x.cos(x^2 )+sin(2x)
$${f}\:'\left({x}\right)=\mathrm{4}{x}.{cosx}^{\mathrm{2}} +\mathrm{2}{cosx}.{sinx}−\mathrm{0}=\mathrm{4}{x}.{cos}\left({x}^{\mathrm{2}} \right)+{sin}\left(\mathrm{2}{x}\right) \\ $$
Answered by Ar Brandon last updated on 04/Aug/21
f(x)=2sin(x^2 )−cos^2 x−2  f ′(x)=4xcos(x^2 )+2sinxcosx              =4xcos(x^2 )+sin2x
$${f}\left({x}\right)=\mathrm{2sin}\left({x}^{\mathrm{2}} \right)−\mathrm{cos}^{\mathrm{2}} {x}−\mathrm{2} \\ $$$${f}\:'\left({x}\right)=\mathrm{4}{x}\mathrm{cos}\left({x}^{\mathrm{2}} \right)+\mathrm{2sin}{x}\mathrm{cos}{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}{x}\mathrm{cos}\left({x}^{\mathrm{2}} \right)+\mathrm{sin2}{x} \\ $$
Commented by Ar Brandon last updated on 04/Aug/21
Haha ! J′avais commis cette me^� me erreur   avant de m′en rendre compte, apre^� s avoir  vu les diffe^� rentes solutions propose^� es.
$$\mathrm{Haha}\:!\:\mathrm{J}'\mathrm{avais}\:\mathrm{commis}\:\mathrm{cette}\:\mathrm{m}\hat {\mathrm{e}me}\:\mathrm{erreur}\: \\ $$$$\mathrm{avant}\:\mathrm{de}\:\mathrm{m}'\mathrm{en}\:\mathrm{rendre}\:\mathrm{compte},\:\mathrm{apr}\grave {\mathrm{e}s}\:\mathrm{avoir} \\ $$$$\mathrm{vu}\:\mathrm{les}\:\mathrm{diff}\acute {\mathrm{e}rentes}\:\mathrm{solutions}\:\mathrm{propos}\acute {\mathrm{e}es}. \\ $$
Commented by Ar Brandon last updated on 04/Aug/21
😇
😇
Commented by mathdanisur last updated on 04/Aug/21
Thank You Ser
$${Thank}\:{You}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *