Menu Close

f-x-2x-3-f-x-




Question Number 95339 by mathocean1 last updated on 24/May/20
f(x)=∣2x+3∣  f ′(x)=...?
f(x)=∣2x+3f(x)=?
Answered by john santu last updated on 24/May/20
f(x) = (√((2x+3)^2 ))  f ′(x) = ((2(2x+3)^1 .2)/(2(√((2x+3)^2 ))))  f ′(x) = ((4x+6)/(∣2x+3∣))
f(x)=(2x+3)2f(x)=2(2x+3)1.22(2x+3)2f(x)=4x+62x+3
Answered by prakash jain last updated on 24/May/20
x=(y/2)−(3/2)⇒y=2(x+(3/2))  ∣2x−3∣=∣y∣  ((df(x))/dx)=(d/dy)∣y∣×(dy/dx)=(y/(∣y∣))×2  =((2(x+(3/2)))/(∣2(x+(3/2))∣))×2=((4x+6)/(∣2x+3∣))
x=y232y=2(x+32)2x3∣=∣ydf(x)dx=ddyy×dydx=yy×2=2(x+32)2(x+32)×2=4x+62x+3
Commented by john santu last updated on 24/May/20
yes. your are right
yes.yourareright
Answered by  M±th+et+s last updated on 24/May/20
by first principle  lim_(h→0) ((∣2(x+h)+3∣−∣2x+3∣)/( h)).((∣2(x+h)+3∣+∣2x+3∣)/(∣2(x+h)+3∣+∣2x+3∣))  lim_(h→0) ((∣(2x+3)+2h∣^2 −∣2x+3∣^2 )/(h(∣2(x+h)+3∣+∣2x+3∣)))  lim_(h→0) (((2x+3)^2 +4(2x+3)h+4h^2 −(2x+3)^2 )/(h(∣(2x+3)+2h∣+∣2x+3∣)))  lim_(h→0) ((4h(2x+3+h))/(h(∣(2x+3)+2h∣+∣2x+3∣)))  lim_(x→0) ((4(2x+3+h))/(∣2x+3+h∣+∣2x+3∣))=((4x+6)/(∣2x+3∣))
byfirstprinciplelimh02(x+h)+32x+3h.2(x+h)+3+2x+32(x+h)+3+2x+3limh0(2x+3)+2h22x+32h(2(x+h)+3+2x+3)limh0(2x+3)2+4(2x+3)h+4h2(2x+3)2h((2x+3)+2h+2x+3)limh04h(2x+3+h)h((2x+3)+2h+2x+3)limx04(2x+3+h)2x+3+h+2x+3=4x+62x+3
Commented by john santu last updated on 24/May/20
∣2(x+h)+3∣ = ∣(2x+3)+2h∣
2(x+h)+3=(2x+3)+2h
Commented by  M±th+et+s last updated on 24/May/20
yes i didn′t focus.thank you sir
yesididntfocus.thankyousir
Answered by mathmax by abdo last updated on 24/May/20
f(x)= { ((2x+3 if x>−(3/2)       and f(−(3/2))=0 ⇒)),((−2x−3  if  x<−(3/2) )) :}  f^′ (x) = { ((2 if x>−(3/2))),((−2 if x<−(3/2))) :}  rest studying derivability at x_0 =−(3/2) ....
f(x)={2x+3ifx>32andf(32)=02x3ifx<32f(x)={2ifx>322ifx<32reststudyingderivabilityatx0=32.
Answered by 1549442205 last updated on 25/May/20
we have f^2 (x)=4x^2 +12x+9⇒  2f(x).f^′ (x)=8x+12⇒f^′ (x)=((8x+12)/(2f(x)))=((4x+6)/(∣2x+3∣))
wehavef2(x)=4x2+12x+92f(x).f(x)=8x+12f(x)=8x+122f(x)=4x+62x+3
Answered by mathmax by abdo last updated on 10/Oct/21
f(x)=(√((2x+3)^2 )) ⇒f^′ (x)=((2.2(2x+3))/(2(√((2x+3)^2 ))))=((4x+6)/(∣2x+3∣))
f(x)=(2x+3)2f(x)=2.2(2x+3)2(2x+3)2=4x+62x+3
Commented by prakash jain last updated on 10/Oct/21
how are you, sir
howareyou,sir

Leave a Reply

Your email address will not be published. Required fields are marked *