Menu Close

f-x-2x-3-f-x-




Question Number 95339 by mathocean1 last updated on 24/May/20
f(x)=∣2x+3∣  f ′(x)=...?
$$\mathrm{f}\left(\mathrm{x}\right)=\mid\mathrm{2x}+\mathrm{3}\mid \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)=…? \\ $$
Answered by john santu last updated on 24/May/20
f(x) = (√((2x+3)^2 ))  f ′(x) = ((2(2x+3)^1 .2)/(2(√((2x+3)^2 ))))  f ′(x) = ((4x+6)/(∣2x+3∣))
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\frac{\mathrm{2}\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{1}} .\mathrm{2}}{\mathrm{2}\sqrt{\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4x}+\mathrm{6}}{\mid\mathrm{2x}+\mathrm{3}\mid} \\ $$
Answered by prakash jain last updated on 24/May/20
x=(y/2)−(3/2)⇒y=2(x+(3/2))  ∣2x−3∣=∣y∣  ((df(x))/dx)=(d/dy)∣y∣×(dy/dx)=(y/(∣y∣))×2  =((2(x+(3/2)))/(∣2(x+(3/2))∣))×2=((4x+6)/(∣2x+3∣))
$${x}=\frac{{y}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}\Rightarrow{y}=\mathrm{2}\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$\mid\mathrm{2}{x}−\mathrm{3}\mid=\mid{y}\mid \\ $$$$\frac{{df}\left({x}\right)}{{dx}}=\frac{{d}}{{dy}}\mid{y}\mid×\frac{{dy}}{{dx}}=\frac{{y}}{\mid{y}\mid}×\mathrm{2} \\ $$$$=\frac{\mathrm{2}\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mid\mathrm{2}\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)\mid}×\mathrm{2}=\frac{\mathrm{4}{x}+\mathrm{6}}{\mid\mathrm{2}{x}+\mathrm{3}\mid} \\ $$
Commented by john santu last updated on 24/May/20
yes. your are right
$$\mathrm{yes}.\:\mathrm{your}\:\mathrm{are}\:\mathrm{right} \\ $$
Answered by  M±th+et+s last updated on 24/May/20
by first principle  lim_(h→0) ((∣2(x+h)+3∣−∣2x+3∣)/( h)).((∣2(x+h)+3∣+∣2x+3∣)/(∣2(x+h)+3∣+∣2x+3∣))  lim_(h→0) ((∣(2x+3)+2h∣^2 −∣2x+3∣^2 )/(h(∣2(x+h)+3∣+∣2x+3∣)))  lim_(h→0) (((2x+3)^2 +4(2x+3)h+4h^2 −(2x+3)^2 )/(h(∣(2x+3)+2h∣+∣2x+3∣)))  lim_(h→0) ((4h(2x+3+h))/(h(∣(2x+3)+2h∣+∣2x+3∣)))  lim_(x→0) ((4(2x+3+h))/(∣2x+3+h∣+∣2x+3∣))=((4x+6)/(∣2x+3∣))
$${by}\:{first}\:{principle} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{\mid\mathrm{2}\left({x}+{h}\right)+\mathrm{3}\mid−\mid\mathrm{2}{x}+\mathrm{3}\mid}{\:{h}}.\frac{\mid\mathrm{2}\left({x}+{h}\right)+\mathrm{3}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid}{\mid\mathrm{2}\left({x}+{h}\right)+\mathrm{3}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{\mid\left(\mathrm{2}{x}+\mathrm{3}\right)+\mathrm{2}{h}\mid^{\mathrm{2}} −\mid\mathrm{2}{x}+\mathrm{3}\mid^{\mathrm{2}} }{{h}\left(\mid\mathrm{2}\left({x}+{h}\right)+\mathrm{3}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid\right)} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2}{x}+\mathrm{3}\right){h}+\mathrm{4}{h}^{\mathrm{2}} −\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} }{{h}\left(\mid\left(\mathrm{2}{x}+\mathrm{3}\right)+\mathrm{2}{h}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid\right)} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{4}{h}\left(\mathrm{2}{x}+\mathrm{3}+{h}\right)}{{h}\left(\mid\left(\mathrm{2}{x}+\mathrm{3}\right)+\mathrm{2}{h}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{4}\left(\mathrm{2}{x}+\mathrm{3}+{h}\right)}{\mid\mathrm{2}{x}+\mathrm{3}+{h}\mid+\mid\mathrm{2}{x}+\mathrm{3}\mid}=\frac{\mathrm{4}{x}+\mathrm{6}}{\mid\mathrm{2}{x}+\mathrm{3}\mid} \\ $$$$ \\ $$
Commented by john santu last updated on 24/May/20
∣2(x+h)+3∣ = ∣(2x+3)+2h∣
$$\mid\mathrm{2}\left(\mathrm{x}+\mathrm{h}\right)+\mathrm{3}\mid\:=\:\mid\left(\mathrm{2x}+\mathrm{3}\right)+\mathrm{2h}\mid\: \\ $$
Commented by  M±th+et+s last updated on 24/May/20
yes i didn′t focus.thank you sir
$${yes}\:{i}\:{didn}'{t}\:{focus}.{thank}\:{you}\:{sir}\: \\ $$
Answered by mathmax by abdo last updated on 24/May/20
f(x)= { ((2x+3 if x>−(3/2)       and f(−(3/2))=0 ⇒)),((−2x−3  if  x<−(3/2) )) :}  f^′ (x) = { ((2 if x>−(3/2))),((−2 if x<−(3/2))) :}  rest studying derivability at x_0 =−(3/2) ....
$$\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{2x}+\mathrm{3}\:\mathrm{if}\:\mathrm{x}>−\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\mathrm{and}\:\mathrm{f}\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{0}\:\Rightarrow}\\{−\mathrm{2x}−\mathrm{3}\:\:\mathrm{if}\:\:\mathrm{x}<−\frac{\mathrm{3}}{\mathrm{2}}\:}\end{cases} \\ $$$$\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\begin{cases}{\mathrm{2}\:\mathrm{if}\:\mathrm{x}>−\frac{\mathrm{3}}{\mathrm{2}}}\\{−\mathrm{2}\:\mathrm{if}\:\mathrm{x}<−\frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{rest}\:\mathrm{studying}\:\mathrm{derivability}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =−\frac{\mathrm{3}}{\mathrm{2}}\:…. \\ $$
Answered by 1549442205 last updated on 25/May/20
we have f^2 (x)=4x^2 +12x+9⇒  2f(x).f^′ (x)=8x+12⇒f^′ (x)=((8x+12)/(2f(x)))=((4x+6)/(∣2x+3∣))
$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{4x}^{\mathrm{2}} +\mathrm{12x}+\mathrm{9}\Rightarrow \\ $$$$\mathrm{2f}\left(\mathrm{x}\right).\mathrm{f}\:^{'} \left(\mathrm{x}\right)=\mathrm{8x}+\mathrm{12}\Rightarrow\mathrm{f}\:^{'} \left(\mathrm{x}\right)=\frac{\mathrm{8x}+\mathrm{12}}{\mathrm{2f}\left(\mathrm{x}\right)}=\frac{\mathrm{4x}+\mathrm{6}}{\mid\mathrm{2x}+\mathrm{3}\mid}\: \\ $$
Answered by mathmax by abdo last updated on 10/Oct/21
f(x)=(√((2x+3)^2 )) ⇒f^′ (x)=((2.2(2x+3))/(2(√((2x+3)^2 ))))=((4x+6)/(∣2x+3∣))
$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{2}} }\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=\frac{\mathrm{2}.\mathrm{2}\left(\mathrm{2x}+\mathrm{3}\right)}{\mathrm{2}\sqrt{\left(\mathrm{2x}+\mathrm{3}\right)^{\mathrm{2}} }}=\frac{\mathrm{4x}+\mathrm{6}}{\mid\mathrm{2x}+\mathrm{3}\mid} \\ $$
Commented by prakash jain last updated on 10/Oct/21
how are you, sir
$$\mathrm{how}\:\mathrm{are}\:\mathrm{you},\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *