Menu Close

f-x-2x-3-x-2-2x-1-f-1-x-




Question Number 47778 by gunawan last updated on 14/Nov/18
f(x)=2x^3 +x^2 −2x−1  f^(−1) (x)=...
f(x)=2x3+x22x1f1(x)=
Answered by MJS last updated on 15/Nov/18
2y^3 +y^2 −2y−x−1=0  y^3 +(1/2)y^2 −y−((x+1)/2)=0  y=z−(1/6)  z^3 −((13)/(12))z−((54x+35)/(108))=0  now it depends on the value of x  p=−((13)/(12)); q=−((54x+35)/(108))  D=(p^3 /(27))+(q^2 /4)=(1/(16))x^2 +((35)/(432))x−(1/(48))    case 1  D<0 ⇒ 3 real solutions ⇒ trigonometric method       −((35)/(54))−((13(√(13)))/(54))<x<−((35)/(54))+((13(√(13)))/(54))       z=2(√(−(p/3)))sin (((2πk)/3)+(1/3)arcsin (((9q)/(2p^2 ))(√(−(p/3))))) with k=0, 1, 2       z= { ((−((√(13))/3)sin ((1/3)arcsin (((54x+35)(√(13)))/(169))))),((((√(13))/3)sin ((π/3)+(1/3)arcsin (((54x+35)(√(13)))/(169))))),((−((√(13))/3)cos ((π/6)+(1/3)arcsin (((54x+35)(√(13)))/(169))))) :}       f^(−1) :  { ((y=−(1/6)−((√(13))/3)sin ((1/3)arcsin (((54x+35)(√(13)))/(169))))),((y=−(1/6)+((√(13))/3)sin ((π/3)+(1/3)arcsin (((54x+35)(√(13)))/(169))))),((y=−(1/6)−((√(13))/3)cos ((π/6)+(1/3)arcsin (((54x+35)(√(13)))/(169))))) :}    case 2  D=0 ⇒ 2 real solutions ⇒ Cardano′s method       x=−((35)/(54))±((13(√(13)))/(54))       z=((−(q/2)+(√D)))^(1/3) +((−(q/2)−(√D)))^(1/3) =2((−(q/2)))^(1/3)        z=±((√(13))/3)       f^(−1) (x): y=−(1/6)±((√(13))/3)    case 3  D>0 ⇒ 1 real solution ⇒ Cardano′s method       x<−((35)/(54))−((13(√(13)))/(54)) ∨ x>−((35)/(54))+((13(√(13)))/(54))       z=((−(q/2)+(√D)))^(1/3) +((−(q/2)−(√D)))^(1/3)        z=(1/6)((54x+35+6(√(3(27x^2 +35x−9)))))^(1/3) +(1/6)((54x+35−6(√(3(27x^2 +35x−9)))))^(1/3)        f^(−1) (x): (1/6)(−1+((54x+35+6(√(3(27x^2 +35x−9)))))^(1/3) +((54x+35−6(√(3(27x^2 +35x−9)))))^(1/3) )
2y3+y22yx1=0y3+12y2yx+12=0y=z16z31312z54x+35108=0nowitdependsonthevalueofxp=1312;q=54x+35108D=p327+q24=116x2+35432x148case1D<03realsolutionstrigonometricmethod3554131354<x<3554+131354z=2p3sin(2πk3+13arcsin(9q2p2p3))withk=0,1,2z={133sin(13arcsin(54x+35)13169)133sin(π3+13arcsin(54x+35)13169)133cos(π6+13arcsin(54x+35)13169)f1:{y=16133sin(13arcsin(54x+35)13169)y=16+133sin(π3+13arcsin(54x+35)13169)y=16133cos(π6+13arcsin(54x+35)13169)case2D=02realsolutionsCardanosmethodx=3554±131354z=q2+D3+q2D3=2q23z=±133f1(x):y=16±133case3D>01realsolutionCardanosmethodx<3554131354x>3554+131354z=q2+D3+q2D3z=1654x+35+63(27x2+35x9)3+1654x+3563(27x2+35x9)3f1(x):16(1+54x+35+63(27x2+35x9)3+54x+3563(27x2+35x9)3)
Commented by gunawan last updated on 21/Nov/18
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *