Menu Close

F-x-3cos-x-4sin-x-F-101-pi-2-




Question Number 159719 by tounghoungko last updated on 20/Nov/21
     F(x)= 3cos x + 4sin x , F^((101)) ((π/2))=?
$$\:\:\:\:\:{F}\left({x}\right)=\:\mathrm{3cos}\:{x}\:+\:\mathrm{4sin}\:{x}\:,\:{F}^{\left(\mathrm{101}\right)} \left(\frac{\pi}{\mathrm{2}}\right)=? \\ $$
Answered by mathmax by abdo last updated on 20/Nov/21
f^((n)) (x)=3cos(x+((nπ)/2))+4sin(x+((nπ)/2))  ⇒f^((101)) ((π/2))=3cos((π/2)+((101π)/2))+4sin((π/2)+((101π)/2))  =3cos(((102π)/2))+4sin(((102π)/2))  =3cos(51π)+4sin(51π)  =3cos(π+50π)+4sin(π+50π)  =3cos(π)+4sin(π)=−3+0 =−3
$$\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)=\mathrm{3cos}\left(\mathrm{x}+\frac{\mathrm{n}\pi}{\mathrm{2}}\right)+\mathrm{4sin}\left(\mathrm{x}+\frac{\mathrm{n}\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{f}^{\left(\mathrm{101}\right)} \left(\frac{\pi}{\mathrm{2}}\right)=\mathrm{3cos}\left(\frac{\pi}{\mathrm{2}}+\frac{\mathrm{101}\pi}{\mathrm{2}}\right)+\mathrm{4sin}\left(\frac{\pi}{\mathrm{2}}+\frac{\mathrm{101}\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{3cos}\left(\frac{\mathrm{102}\pi}{\mathrm{2}}\right)+\mathrm{4sin}\left(\frac{\mathrm{102}\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{3cos}\left(\mathrm{51}\pi\right)+\mathrm{4sin}\left(\mathrm{51}\pi\right) \\ $$$$=\mathrm{3cos}\left(\pi+\mathrm{50}\pi\right)+\mathrm{4sin}\left(\pi+\mathrm{50}\pi\right) \\ $$$$=\mathrm{3cos}\left(\pi\right)+\mathrm{4sin}\left(\pi\right)=−\mathrm{3}+\mathrm{0}\:=−\mathrm{3} \\ $$
Commented by cortano last updated on 20/Nov/21
nice
$${nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *