Menu Close

f-x-4-4x-2-3-4x-2-4x-5-prove-that-f-x-2-




Question Number 79644 by loveineq. last updated on 26/Jan/20
f(x) = ((4(4x^2 +3))/(4x^2 +4x+5))  prove that f(x) ≥ 2 .
f(x)=4(4x2+3)4x2+4x+5provethatf(x)2.
Commented by john santu last updated on 27/Jan/20
let f(x)<2  ((16x^2 +12)/(4x^2 +4x+5))<2 ⇒4x^2 +4x+5>0 ∀x∈R  16x^2 +12<8x^2 +8x+10  8x^2 −8x+2<0 ⇒Δ= 64−4.8.2=0  x^2 −x+(1/4)=(x−(1/2))^2 ≥0  contradiction with the initial  statement.  so f(x)≥2.
letf(x)<216x2+124x2+4x+5<24x2+4x+5>0xR16x2+12<8x2+8x+108x28x+2<0Δ=644.8.2=0x2x+14=(x12)20contradictionwiththeinitialstatement.sof(x)2.
Answered by mr W last updated on 27/Jan/20
f(x) = ((4(4x^2 +3))/(4x^2 +4x+5))  = ((4(4x^2 +4x+5−4x−2))/(4x^2 +4x+5))  =4(1−((x+(1/2))/(x^2 +x+(5/4))))  =4(1−((x+(1/2))/((x+(1/2))^2 +1)))  =4(1−(1/((x+(1/2))+(1/((x+(1/2)))))))  =4(1+(1/(t+(1/t))))≥4(1−(1/2))=2  with t=−x−(1/2)
f(x)=4(4x2+3)4x2+4x+5=4(4x2+4x+54x2)4x2+4x+5=4(1x+12x2+x+54)=4(1x+12(x+12)2+1)=4(11(x+12)+1(x+12))=4(1+1t+1t)4(112)=2witht=x12

Leave a Reply

Your email address will not be published. Required fields are marked *