Menu Close

f-x-4x-2-1-2x-2-1-prove-that-1-f-x-2-




Question Number 130354 by greg_ed last updated on 24/Jan/21
f(x)=((4x^2 +1)/(2x^2 +1))  prove that 1 ≤ f(x) ≤ 2
f(x)=4x2+12x2+1provethat1f(x)2
Answered by MJS_new last updated on 24/Jan/21
f(x)=2−(1/(2x^2 +1))  minimum of (1/(2x^2 +1)) is 0 (with x=±∞)  maximum of (1/(2x^2 +1)) is 1 (with x=0)  ⇒  minimum of f(x) is 2−1=1  maximum if f(x) is 2−0=2
f(x)=212x2+1minimumof12x2+1is0(withx=±)maximumof12x2+1is1(withx=0)minimumoff(x)is21=1maximumiff(x)is20=2
Answered by ajfour last updated on 24/Jan/21
f(x)=((4(x^2 +(1/2))−1)/(2(x^2 +(1/2))))         = 2−((((1/2)))/(((1/2))+x^2 ))       ⇒  1 ≤ f(x) ≤ 2
f(x)=4(x2+12)12(x2+12)=2(12)(12)+x21f(x)2
Answered by nueron last updated on 24/Jan/21
Answered by Olaf last updated on 24/Jan/21
f(x) = ((4x^2 +1)/(2x^2 +1)) = 2−(1/(2x^2 +1))  ⇒ f(x) ≤ 2 (trivial)  f(x)−1 = ((4x^2 +1)/(2x^2 +1))−1 = ((2x^2 )/(2x^2 +1)) ≥ 0  ⇒ f(x) ≥ 1 (trivial)
f(x)=4x2+12x2+1=212x2+1f(x)2(trivial)f(x)1=4x2+12x2+11=2x22x2+10f(x)1(trivial)
Answered by john_santu last updated on 25/Jan/21
let f(x)=y  ⇒2x^2 y−4x^2 +y−1=0  ⇒(2y−4)x^2 +y−1=0  D = 0−4.(y−1)(2y−4)≥0  ⇒(y−1)(2y−4)≤ 0  ⇒1≤y≤2 ⇒1≤f(x)≤2
letf(x)=y2x2y4x2+y1=0(2y4)x2+y1=0D=04.(y1)(2y4)0(y1)(2y4)01y21f(x)2

Leave a Reply

Your email address will not be published. Required fields are marked *