Question Number 92379 by M±th+et+s last updated on 06/May/20
$${f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{are}\:{functions}\:{with}\:{no} \\ $$$${constants}. \\ $$$${if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{is}\:{that}\:{mean}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$$$?? \\ $$
Commented by john santu last updated on 06/May/20
$$\mathrm{no} \\ $$
Commented by mr W last updated on 06/May/20
$${if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{then}\:{f}\left({x}\right)={g}\left({x}\right)+{C} \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
$$\mathrm{I}\:\mathrm{think}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{constant}\:\mathrm{exists}\:\mathrm{then}\: \\ $$$$\mathrm{if}\:\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{x}\right)\:\forall\mathrm{x}\:\mathrm{then}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{but}\:\mathrm{if}\:\mathrm{f}'\left(\mathrm{x}\right)\:=\:\mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{for}\:\mathrm{some}\:\mathrm{finite}\:\mathrm{x}\:\mathrm{then}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{not}\:\mathrm{necessary}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right)\:.\:\mathrm{Then}\:\mathrm{it}\:\mathrm{might}\:\mathrm{be} \\ $$$$\mathrm{or}\:\mathrm{not}\:\mathrm{might}\:\mathrm{be}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right).\:\mathrm{Please}\:\mathrm{comment}\:\mathrm{sir}. \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
$$\mathrm{sir}\:\mathrm{what}\:\mathrm{if}\:\mathrm{C}\:=\:\mathrm{0} \\ $$
Commented by M±th+et+s last updated on 06/May/20
$${thank}\:{you}\:{sir}\:{prithwish}\:{sen}. \\ $$$${that}\:{was}\:{what}\:{i}\:{meant} \\ $$
Answered by M±th+et+s last updated on 07/May/20
$${let}\:{say}\:{f}\left({x}\right)={sin}^{\mathrm{2}} \left({x}\right)\:{and}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$${f}'\left({x}\right)={sin}\mathrm{2}{x}\: \\ $$$${but}\:{f}\left({x}\right)\neq{g}\left({x}\right) \\ $$$${so}\:{it}'{s}\:{not}\:{correct} \\ $$
Commented by M±th+et+s last updated on 07/May/20
$${i}\:{dont}\:{think}\:{there}\:{is}\:{another}\:{example} \\ $$$${and}\:{now}\:{inotice}\:{that}\:{in}\:{my}\:{example} \\ $$$${f}\left({x}\right)=\mathrm{1}+{g}\left({x}\right)\:{that}\:{means}\:{the}\:{diffrence} \\ $$$${between}\:{them}\:{is}\:{a}\:{constant} \\ $$
Commented by M±th+et+s last updated on 07/May/20
$${so}\:{i}\:{think}\:{that}\:{if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{then}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$
Commented by Prithwish Sen 1 last updated on 07/May/20
$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{May}\:\mathrm{be}\:\left(\mathrm{or}\:\mathrm{may}\:\mathrm{be}\:\mathrm{not}\right)\:\mathrm{it}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\: \\ $$$$\mathrm{exception}. \\ $$
Commented by Prithwish Sen 1 last updated on 07/May/20
$$\mathrm{Excellent}\:!\:\mathrm{But}\:\mathrm{this}\:\mathrm{two}\:\mathrm{funtions}\:\mathrm{are}\:\mathrm{parallal}.\:\mathrm{Just} \\ $$$$\mathrm{a}\:\mathrm{vertical}\:\mathrm{shifting}\:\mathrm{of}\:\mathrm{one}\:\mathrm{function}\:\mathrm{can}\:\mathrm{give}\:\mathrm{you} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{one}.\: \\ $$
Commented by mr W last updated on 07/May/20
$${f}\left({x}\right)={sin}^{\mathrm{2}} \left({x}\right)\:{and}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$${is}\:{just}\:{an}\:{example}\:{for}\:{f}\left({x}\right)={g}\left({x}\right)+{C} \\ $$$${where}\:{C}=\mathrm{1}. \\ $$
Commented by M±th+et+s last updated on 07/May/20
$${yes}\:{sir}\:{that}\:{is}\:{right}\:{so}\:{with}\:{no}\:{constant} \\ $$$$\left({C}\right)\:\:\:\: \\ $$$${f}\left({x}\right)={g}\left({x}\right) \\ $$
Commented by mr W last updated on 07/May/20
$${why}\:{do}\:{you}\:{want}\:{to}\:{say}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$$${from}\:{f}\left({x}\right)={g}\left({x}\right)+{C}? \\ $$
Commented by M±th+et+s last updated on 07/May/20
$${in}\:{my}\:{question}\:{i}\:{said}\:{that}\:{no}\:{constant} \\ $$$${because}\:{i}\:{know}\:{that}\:{f}\left({x}\right)={g}\left({x}\right)+{c} \\ $$$${but}\:{i}\:{was}\:{asking}\:{about}\:{a}\:{functions}\: \\ $$$${with}\:{no}\:{constant}\: \\ $$
Commented by mr W last updated on 07/May/20
$${you}\:{showed}\:{with}\:{example}\:{f}\left({x}\right)=\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$${and}\:{g}\left({x}\right)=−\mathrm{cos}^{\mathrm{2}} \:{x}\:{that}\:{this}\:{is}\:{not} \\ $$$${true}.\:{this}\:{is}\:{certainly}\:{not}\:{the}\:{only} \\ $$$${example}. \\ $$
Commented by M±th+et+s last updated on 07/May/20
$${yes}\:{but}\:{like}\:{i}\:{said}\:{in}\:{the}\:{comments}\:{my} \\ $$$${example}\:{is}\:{wrong}\:{because}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$$−{cos}^{\mathrm{2}} \left({x}\right)=\:{sin}^{\mathrm{2}} \left({x}\right)−\mathrm{1}\:\:{and}\:\mathrm{1}\:{is}\:{constant} \\ $$