Menu Close

f-x-and-g-x-are-functions-with-no-constants-if-f-x-g-x-is-that-mean-f-x-g-x-




Question Number 92379 by  M±th+et+s last updated on 06/May/20
f(x) and g(x) are functions with no  constants.  if f ′(x)=g ′(x) is that mean f(x)=g(x)  ??
$${f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{are}\:{functions}\:{with}\:{no} \\ $$$${constants}. \\ $$$${if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{is}\:{that}\:{mean}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$$$?? \\ $$
Commented by john santu last updated on 06/May/20
no
$$\mathrm{no} \\ $$
Commented by mr W last updated on 06/May/20
if f ′(x)=g ′(x) then f(x)=g(x)+C
$${if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{then}\:{f}\left({x}\right)={g}\left({x}\right)+{C} \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
I think if there is no constant exists then   if f′(x)=g′(x) ∀x then f(x)=g(x)  but if f′(x) = g′(x) for some finite x then it is  not necessary that f(x)=g(x) . Then it might be  or not might be f(x)=g(x). Please comment sir.
$$\mathrm{I}\:\mathrm{think}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{constant}\:\mathrm{exists}\:\mathrm{then}\: \\ $$$$\mathrm{if}\:\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{x}\right)\:\forall\mathrm{x}\:\mathrm{then}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{but}\:\mathrm{if}\:\mathrm{f}'\left(\mathrm{x}\right)\:=\:\mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{for}\:\mathrm{some}\:\mathrm{finite}\:\mathrm{x}\:\mathrm{then}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{not}\:\mathrm{necessary}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right)\:.\:\mathrm{Then}\:\mathrm{it}\:\mathrm{might}\:\mathrm{be} \\ $$$$\mathrm{or}\:\mathrm{not}\:\mathrm{might}\:\mathrm{be}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right).\:\mathrm{Please}\:\mathrm{comment}\:\mathrm{sir}. \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
sir what if C = 0
$$\mathrm{sir}\:\mathrm{what}\:\mathrm{if}\:\mathrm{C}\:=\:\mathrm{0} \\ $$
Commented by  M±th+et+s last updated on 06/May/20
thank you sir prithwish sen.  that was what i meant
$${thank}\:{you}\:{sir}\:{prithwish}\:{sen}. \\ $$$${that}\:{was}\:{what}\:{i}\:{meant} \\ $$
Answered by  M±th+et+s last updated on 07/May/20
let say f(x)=sin^2 (x) and g(x)=−cos^2 (x)  f′(x)=sin2x   but f(x)≠g(x)  so it′s not correct
$${let}\:{say}\:{f}\left({x}\right)={sin}^{\mathrm{2}} \left({x}\right)\:{and}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$${f}'\left({x}\right)={sin}\mathrm{2}{x}\: \\ $$$${but}\:{f}\left({x}\right)\neq{g}\left({x}\right) \\ $$$${so}\:{it}'{s}\:{not}\:{correct} \\ $$
Commented by  M±th+et+s last updated on 07/May/20
i dont think there is another example  and now inotice that in my example  f(x)=1+g(x) that means the diffrence  between them is a constant
$${i}\:{dont}\:{think}\:{there}\:{is}\:{another}\:{example} \\ $$$${and}\:{now}\:{inotice}\:{that}\:{in}\:{my}\:{example} \\ $$$${f}\left({x}\right)=\mathrm{1}+{g}\left({x}\right)\:{that}\:{means}\:{the}\:{diffrence} \\ $$$${between}\:{them}\:{is}\:{a}\:{constant} \\ $$
Commented by  M±th+et+s last updated on 07/May/20
so i think that if f ′(x)=g ′(x) then f(x)=g(x)
$${so}\:{i}\:{think}\:{that}\:{if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{then}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$
Commented by Prithwish Sen 1 last updated on 07/May/20
Yes sir. May be (or may be not) it is the only   exception.
$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{May}\:\mathrm{be}\:\left(\mathrm{or}\:\mathrm{may}\:\mathrm{be}\:\mathrm{not}\right)\:\mathrm{it}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\: \\ $$$$\mathrm{exception}. \\ $$
Commented by Prithwish Sen 1 last updated on 07/May/20
Excellent ! But this two funtions are parallal. Just  a vertical shifting of one function can give you  the other one.
$$\mathrm{Excellent}\:!\:\mathrm{But}\:\mathrm{this}\:\mathrm{two}\:\mathrm{funtions}\:\mathrm{are}\:\mathrm{parallal}.\:\mathrm{Just} \\ $$$$\mathrm{a}\:\mathrm{vertical}\:\mathrm{shifting}\:\mathrm{of}\:\mathrm{one}\:\mathrm{function}\:\mathrm{can}\:\mathrm{give}\:\mathrm{you} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{one}.\: \\ $$
Commented by mr W last updated on 07/May/20
f(x)=sin^2 (x) and g(x)=−cos^2 (x)  is just an example for f(x)=g(x)+C  where C=1.
$${f}\left({x}\right)={sin}^{\mathrm{2}} \left({x}\right)\:{and}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$${is}\:{just}\:{an}\:{example}\:{for}\:{f}\left({x}\right)={g}\left({x}\right)+{C} \\ $$$${where}\:{C}=\mathrm{1}. \\ $$
Commented by  M±th+et+s last updated on 07/May/20
yes sir that is right so with no constant  (C)      f(x)=g(x)
$${yes}\:{sir}\:{that}\:{is}\:{right}\:{so}\:{with}\:{no}\:{constant} \\ $$$$\left({C}\right)\:\:\:\: \\ $$$${f}\left({x}\right)={g}\left({x}\right) \\ $$
Commented by mr W last updated on 07/May/20
why do you want to say f(x)=g(x)  from f(x)=g(x)+C?
$${why}\:{do}\:{you}\:{want}\:{to}\:{say}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$$${from}\:{f}\left({x}\right)={g}\left({x}\right)+{C}? \\ $$
Commented by  M±th+et+s last updated on 07/May/20
in my question i said that no constant  because i know that f(x)=g(x)+c  but i was asking about a functions   with no constant
$${in}\:{my}\:{question}\:{i}\:{said}\:{that}\:{no}\:{constant} \\ $$$${because}\:{i}\:{know}\:{that}\:{f}\left({x}\right)={g}\left({x}\right)+{c} \\ $$$${but}\:{i}\:{was}\:{asking}\:{about}\:{a}\:{functions}\: \\ $$$${with}\:{no}\:{constant}\: \\ $$
Commented by mr W last updated on 07/May/20
you showed with example f(x)=sin^2  x  and g(x)=−cos^2  x that this is not  true. this is certainly not the only  example.
$${you}\:{showed}\:{with}\:{example}\:{f}\left({x}\right)=\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$${and}\:{g}\left({x}\right)=−\mathrm{cos}^{\mathrm{2}} \:{x}\:{that}\:{this}\:{is}\:{not} \\ $$$${true}.\:{this}\:{is}\:{certainly}\:{not}\:{the}\:{only} \\ $$$${example}. \\ $$
Commented by  M±th+et+s last updated on 07/May/20
yes but like i said in the comments my  example is wrong because g(x)=−cos^2 (x)  −cos^2 (x)= sin^2 (x)−1  and 1 is constant
$${yes}\:{but}\:{like}\:{i}\:{said}\:{in}\:{the}\:{comments}\:{my} \\ $$$${example}\:{is}\:{wrong}\:{because}\:{g}\left({x}\right)=−{cos}^{\mathrm{2}} \left({x}\right) \\ $$$$−{cos}^{\mathrm{2}} \left({x}\right)=\:{sin}^{\mathrm{2}} \left({x}\right)−\mathrm{1}\:\:{and}\:\mathrm{1}\:{is}\:{constant} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *